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ABSTRACT  
Cable structures, membrane structures, etc. reveal the structural characteristics such that 
materials used for these structures cannot transmit the compression stress, and then these 
structures belong to stress-unilateral structural systems.  In the paper, the buckling of 
hybrid structures which consist of rigid bars and cables is treated.  These hybrid structures 
are one kind of stress-unilateral structural systems and have two problems about (1) the 
construction of consistent stiffness matrix and (2) the selection of higher buckling load in 
the buckling analysis.  The paper describes some illustrative examples of these two 
problems and presents an analytical method in order to avoid these problems. 
 
 
INTRODUCTION  
Fig.1 shows two kinds of spring-mass models.  In the case(a), the spring constant (k) is 
the same as k k k= + + −  in spite of the displacement direction.  On the contrary, in the 
case(b), the spring constant depends upon the direction of displacement such that k k= +  
for d > 0  and k k= −  for d < 0 .  The case(a) and the case(b) are called “bilateral stress 
system” and “unilateral stress system”, respectively [1,2].  For a cable member due to the 
compression force, k − = 0  is usually assumed in the numerical analysis.   
Fig.2 shows the force-displacement relations for these spring-mass models.  Table 1 
shows illustrative examples of unilateral stress systems.  Since the magnitude of elastic 
coefficients depends upon the direction of displacement, the stiffness matrix becomes a 
function of displacement and the force-displacement relation takes the form :  

 
                           f K d  d= ( )                           ( 1 ) 
 
where f : force vector, d : displacement vector and K : stiffness matrix. 
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           (a) Bilateral stress         (b) Unilateral stress  
Fig. 1 : Bilateral and Unilateral Spring-Mass Models 

 
 

 
       (a) Bilateral( k k k= ++ −  )                 (b) Unilateral 

Fig. 2 : Force-Displacement Relation 
 
 

Table 1 : Unilateral Stress System 

 
 
In the beginning of the numerical analysis, d  is unknown so that the mode of 
displacement is usually assumed such as  

                            d  d= (0)                          ( 2 ) 

Introduction of Eq.(2) into Eq.(1) gives us  

                      f K d  d K d= =( )( ) ( )0 0                   ( 3 ) 

 
which gives us  
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                       d K d  f( ) ( )( )− −=1 1 0                        ( 4 ) 

 
In the similar manner, we have for  r = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅0 1 2, , , ,   

                    f K d  d K d= =( )( ) ( )r r                        ( 5 ) 

 

If K K( ) ( )r r= +1  holds, the modes d( )r  and d( )r+1  are coincident.  In this case, 
K K K≡ = +( ) ( )r r 1  is called “consistent stiffness matrix”.  But, there exist cases where the 
construction of consistent stiffness matrix is impossible.  An example for this case is 
shown in the following. 
Even though we have consistent stiffness matrices, we have other problem about the 
selection of higher buckling load.  If we assume two different initial modes of 

displacement, say, d( )0  and d( )0 , then we have two different iteration processes such as  

             (a) d K d K( ) ( ) ( ) ( )0 0 1 1→ → → → ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅  

             (b) d K d K( ) ( ) ( ) ( )0 0 1 1→ → → → ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅  

 
And, after several iterations, the above processes lead to the consistent stiffness matrices 
K  and K , which give us the buckling loads Pcr  and Pcr .  If these buckling loads are 
different, say, P Pcr cr> , then we have higher buckling load when we start the iteration 

process with d( )0 .  An example about the selection of higher buckling load is also 
presented in following. 
In the last part of the paper, the vibration method is proposed in order to avoid these two 
problems. 
TANGENT STIFFNESS OF UNILATERAL STRESS SYSTEM  
As shown in Fig.3, consider node i  with two different spring constants : ki

+  and ki
− . 

If ki is the spring constant of node i , the relation  
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holds .  Eq.(6) gives us 
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Then, the load-displacement relation of node i  takes the form  
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Consider two models : (a) Bilateral spring-rigid bar model(Model-A) and (b) Unilateral 

spring-rigid bar model(Model-B) as shown in Fig.4 and 5. 

The total potential energy (∏ ) is given by taking the sum of the internal energy(U) stored 

in springs and the potential energy of the external force(− ⋅P Δ ) as 
 
                     ∏ = − ⋅U P Δ                            ( 1 0 ) 
 
where P : the axial force and Δ : the displacement of the end node. 
 

 
Fig. 3 : Spring of Unilateral Stress System 
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Fig. 4 : Bilateral Spring-Rigid Bar Model(Model-A) 

 
  

 
Fig. 5 : Unilateral Spring-Rigid Bar Model(Model-B) 

 
 

 
Fig. 6 : Model-1 

 
 

 
Fig. 7 : Model-2 

 
If we introduce  
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and    
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Eq.(10) takes the form 
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Equilibrium equations are obtained by ∂
∂
∏

=
di

0  as 

 
               K d 0A ( )P =            f o r   M o d e l - A        ( 1 5 ) 

 
 

               K d d 0B (sgn( ) , )P =       f o r   M o d e l - B        ( 1 6 ) 
 
 
in which K A ( )P  and K dB (sgn( ) , )P  are the tangent stiffness matrices. 
 
 
BUCKLING ANALYSIS 
 
The eigenvalue analysis of Eqs.(15) and (16) gives us buckling loads and buckling modes.  
At the buckling point, 
 
              K A ( )Pcr = 0           f o r   M o d e l - A        ( 1 7 ) 

 
              K dB (sgn( ) , )Pcr = 0      f o r   M o d e l - B        ( 1 8 ) 
 



hold.  For Model-B, sgn(d) is unknown before the buckling mode is determined.  Then, 

an iteration process is usually used.  The iteration process is given in Fig.8 where r is the 

number of iteration step.  If the buckling modes d( )r+1  coincidents with d( )r , the tangent 

matrix K ( )r+1  is consistent with K ( )r  and the buckling load P P Pcr
r

cr
r

cr
( ) ( )= =+1  is 

obtained. 

But, there exists the case where the construction of consistent stiffness matrix is 

impossible.  Consider Model-1 shown in Fig.6.  If we assume the buckling mode (- - +) 

for r = 0 , the iteration process becomes as follows. 

 
In this case, the iteration process circulates and we are unable to have the 

consistent tangent stiffness matrix. 

Next, an example of the selection of higher buckling load is shown.  Fig.7 

shows a model named Model-2 and Table 2 shows the iteration process.  If we 

start from the assumed buckling mode ①, the first iteration step gives us the 

same buckling mode as shown in the first row and we gets the buckling load 

Pcr = 6 684. .  However, if we start from the assumed buckling modes ② ~ ⑩, a 

few iteration steps give us the same buckling modes as ⑥ and the buckling load 

Pcr = 6 728.  is obtained.  Pcr  is higher than Pcr  so that the different selection of 

assumed buckling modes give the different buckling loads.  These two 

examples shows the issues about (1) the construction of consistent stiffness 

matrix and (2) the selection of higher buckling load. 
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Fig. 8 : Iteration Process 

 
Table 2 : Initial Modes and Buckling Loads 

Initial 
Mode( r = 0 ) r = 1 r = 2  Buckling Load

①(+ − − + ) ①(+ − − + ) −  convergent Pcr = 6 684.  
②(+ − − − ) ⑤(− + − − ) ⑥(+ − + − )
③(+ + − − ) ⑤(− + − − ) ⑥(+ − + − )
④(+ + − + ) ⑤(− + − − ) ⑥(+ − + − )
⑤(− + − − ) ⑥(+ − + − ) ⑥(+ − + − )
⑥(+ − + − ) ⑥(+ − + − ) ⑥(+ − + − )
⑦(+ + + + ) ⑥(+ − + − ) ⑥(+ − + − )
⑧(+ + + − ) ⑥(+ − + − ) ⑥(+ − + − )
⑨(− + + − ) ⑥(+ − + − ) ⑥(+ − + − )
⑩(− − − − ) ⑥(+ − + − ) ⑥(+ − + − )

convergent Pcr = 6 728.  

assumed buckling mode : d ( )0

buckling mode : d ( )r +1

buckling load :

eigenvalue analysis

Pcr
r( )+1

E N D

NO
consistent (YES)

construct of the tangent
stiffness matrix :K d(sgn( ) , )( )r P

the comparison of d ( )r and d ( )r +1



VIBRATION METHOD 
 
To avoid the previous two problems, the vibration method is introduced.  The equation of 
motion for the uni-lateral spring-bar model takes the form : 
 

               M d K d d 0d
dt

P
2

2 + =(sgn( ) , )                   ( 1 9 ) 

 
where M is the mass matrix (for example, the case that all nodes have the same unit mass 
gives M I= , in which I  is identity matrix) and t  denotes time. 
 
 

 
               (a) case-1                         (b)case-2  

 
Fig. 9 : Vibration Method 
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Eq.(19) is a nonlinear equation and is analyzed numerically by Newmark'sβ  method with 

β = 1 4/ .  Fig.9 represents the numerical results for Model-2 with two different initial 

modes.  Two graphs show the maximum responses evaluated from each time history 

curves as the load P  increases.  The buckling load is defined as the load level at which 

the maximum displacement response increases suddenly.  Fig.9 gives us the buckling 

load Pcr = 6 684.  and the buckling mode(+ − − + ) which coincide with the buckling 

load and mode in the first row of Table 2. 
The reason that the correct buckling load and mode are obtained by the vibration method 
can be considered as almost all modes occur during the numerical intergration analysis. 
 
CONCLUSIONS  
  Two problems about (1) the construction of consistent stiffness matrix and (2) the 
selection of higher buckling load in the buckling analysis of unilateral structural systems 
are presented with illustrative examples.  To avoid these problems, the vibration method 
is tried and shown to be an effective method. 
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