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Abstract 
      It has been proposed that neural network algorithm is applied to vibration control of a shell structure. The con-
trol object is a conical shell structure comprised of dampers which work in the vertical direction at the antinode of 
the first mode, and the damping ratio alternates between from 0.02 to 0.2. The purpose of control is the reduction 
of relative displacement to the ground at whole shell through adjusting damping ratio. Controlling the shell, the 
Elman type neural network is employed and network weights are updated by on-line back-propagation proce-
dure. Miyagiken-oki earthquake is employed to input acceleration that is enlarged 2m/s2. The control effects are 
estimated by comparison with non-control results. 
 
 
1. Introduction 
      A wide variety of research on motion control using 
a neural network algorithm has widely been made.  
For example,  the control algorithm was proposed by 
means of control simulation1). The algorithm of the 
motion control was estimated by means of artificial 
neural networks based on comparison of the analysis 
of the results of the physiological experiment with the 
biological neural networks2). Both of these research 
groups pay special attention to the flow of the learning 
method and information. 
     As the study for applications to the engineering of 
the motion/vibration control by means of the neural 
networks, for example, the autonomous underwater 
vehicles3) and vibration control of cantilevers4), the 
vibration control of a particles system structure5), and 

other such work can be referred to. 
Shallow rotational shell structures are subjected to 

greater influence in the case of vertical motion than in 
the case of horizontal earthquakes6). Accordingly it is 
very important to lower the stress by restricting the 
vibration of the shells subjected to the vertical seismic 
forces7). 
     Applications of the fuzzy vibration control of shell 
structures have been proposed by Shingu and Fuku-
shima7),8),9). Applications of the neural-network-based 
vibration control of a rigid-connection frame structure 
have been made at first by Hiratsuka and Shingu5). In 
the previous paper 10), an application of the vibration 
control using hierarchical neural networks was pro-
posed in connection with the case where the vertical 
seismic forces act on a conical shell, and the vibration 



control simulation is conducted.  
    In this paper, the Elman type neural network is 

used. Control results are estimated with non-control 
results (damping ratio:0.02 ; damping ratio:0.1115 
which is the average damping ratio of the controlled 
one). The simulation results show that the displace-
ments and the stresses in the shell with control are 
smaller than those in the shell without control. Then 
the conclusions show that the capability of neu-
ral-network-based vibration control of a shell is made 
clear and the control is very effective. In near future, 
we are going to apply the proposed control system to 
a real shell structure. 

 
2. Vibration control of structure 
     Outline of a control method using a neural network 
for the shell structure is described in the following. 
2.1 Flow of vibration control of shell 
    With vibration control of the shell, the control target, 
a settled value in connection with relative displace-
ment complying with the ground, is zero. The dis-
placement hereby referred to is the vertical displace-
ment on a nodal point of the discrete shell structure. It 
is equivalent to the relative vertical displacement 
complying with the ground obtained by the meas-
urement unit attached to the said nodal point in the 
case of the real structures. The control target is the 
settled value of zero, which stems from the reason 
why the stress becomes smaller as the relative dis-
placement is made smaller to avoid collapse of the 
structure. Let it be understood that the input values to 
the controller are the vertical displacements of the time 
delay, the output data of the hidden layer in the neural 
network and acceleration of seismic wave. The con-
trol signals, which are fed to a damper attached to the 
shell structure, help change the viscosity of the 
damper and the vibration control of the shell is ac-
complished. The controller is the Elman type neural 
network, and the learning regulations will be in ac-
cordance with the back-propagation using the relative 
displacement as a consequence of the control. The 
flow of vibration control is shown in Fig.1. 
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Fig.１   Flow of vibration control 

 
2.2 Fundamental equations of conical shell 

The finite element method with conical frustum 
elements is used to analyze the shell. Usually, seismic 
waves have vertical and horizontal components. Ver-
tical components are important for shallow shells 
subjected to seismic forces. Therefore the shell is 
treated as an axisymmetric problem9)． 

 
2.2.1 Displacement functions 
     Displacements of an element in the meridional and 
normal direction u ,w  and the angle of rotation χ  
are represented in Eq. (1) by polynomials in the me-
ridional distance S . 61 ,, αα L  are unknown coeffi-
cients, and these are determined by the terminal con-
ditions. The global and local coordinates of the conical 
frustum element are shown in Fig. 2．  
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Fig. 2 Displacement components 
 
 



2.2.2 Strain - displacement relation 
     Strains in the meridional and circumferential direc-
tions Sε , θε  and changes in curvature Sκ , θκ  are 
given in Eq. (2)． 
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2.2.3 Stress – Strain relation 
    Stress resultants in the meridional and circumferen-
tial directions SN , θN  and bending moments SM , 

θM  are given in Eq. (3). Components of stress resul-
tans are shown in Fig.3． 
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where 
( )21 ν−= Etk , ( )23 112 ν−= EtD  

E =Young’s modulus, ν =Poisson’s ratio, and 
t =shell thickness 
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Fig. 3   Stress resultants 
 
2.3 Control Object 
   The control object is the conical shell structure that 

is comprised of dampers, which work in the vertical 
direction at the antinode of the first mode. The section 

of the controlled shell is shown in Fig. 4 and the con-
figuration of a damper is shown in Fig. 5. And the 
step-by-step integration method is used for the vibra-
tion analysis of the conical shell8). This method is con-
sidered on the variable damping ratio. Then the 
lumped mass matrix is used. The vibration equation is 
expressed in Eq. (4)．The geometrical and material 
constants of the shell are shown in Table 1. 
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Fig. 4  Conical shell with dampers 
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Fig. 5  Configuration of damper 
 

Table 1 Geometrical and material  
constants of shell 

rise mH 14=  
span ml 70=  
shell thickness m.t 01=  
Young’s 
modulus 

23 mN1035241 −×= .E  

Poisson’s ratio 0=ν  
mass Density 3mkg400=ρ  

 
 

[ ]{ } [ ]{ } [ ]{ } { }mfdKdCdM −=++ &&&           (4) 
where 



[ ] [ ]KM , : mass and stiffness matrix of shell 
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: velocity vector 
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: displacement vector 
*** ,, iii wu χ ( )20,,1L=i  

: vertical, horizontal displacements and 
angle of rotation, respectively 

f : acceleration of seismic force 
{ } { }Tmmmm 0,0,,,0,0,,0,0, 2021 L=  

: mass vector 
20,,1L : node number without supported end  

      The total element and node numbers are 20 
and 21, respectively.   The node numbers are 1 at 
the top, and 21 at the supported end.  The damper 
is attached at node 14. The boundary condition is 
the fixed end. 
     Damping matrix and damping ratios are as 
follows: 
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02.0=iζ   ( )20,,1L=i  
( ) 2.002.0 ≤≤ tζ : damping ratio at the 

antinode of the first 
mode 

1ω : first natural circular frequency  
 
2.4 Neural network 
    The controller utilized here is the 3-layer hierar-

chical neural network as mentioned above (see  Fig.6).  
Each function at a unit in the hidden and the output 
layer is the sigmoid function． 
 
 
 

The sigmoid function is as follows. 
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 Fig. 6   Neural netwrok 
 
2.5 Flow of control simulation 

 The control simulation is repeated in the following 
procedures from (i) to (iv). Dynamic analysis of the 
shell is carried out at 0.002 seconds interval, and the 
shell is controlled at 0.02 seconds interval. 
 
(i) Input into the neural network 
     There are 362 units in the input layer, 181 units in 
the hidden layer and 1 unit in the output layer. The 
functions of the units in the hidden and the output 
layer are sigmoid functions described above. The in-
put data to the network at time ht ++τ  are the dis-
placement, acceleration of seismic wave at time 

τ+t  and ht −+τ , the output data of the hidden 
layer in the neural network  at time τ+t . Here t , h  
and τ  are time, a small time interval during the inte-
gration and a time interval of the control, respectively.  
The output data are calculated by Eqs. (7) and (8). 
 
The value of the unit in the hidden layer iy  is as fol-
lows. 
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jϑ : thresholds of the units in the hidden layer 
 
The value of the unit in the output layer is as follows. 
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( )2
ijw : weight of connection between the output 

layer 
iϕ : thresholds of the units in the output layer 

 
The input data are shown in Eq.(9).  
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where 
*u :  vertical displacement 

ity ,τ+ : output of the hidden layer in the neural 
network at time τ+t  ( )21,...,1=i  

index h : small time interval during integration 
( )( )sec002.0=  

index τ : time interval of control ( )( )sec02.0=  
 
(ii) Calculation of damping ratio 
     The damping ratio is computed at time ht ++τ  
from the output of the neural network by Eq. (10)． 
( )

( ) 02.009.01 3321 +⋅+⋅+−
=++

oooo
ht τς

     (10) 

where 
if ( ) 2.0≥++ ht τς   then ( ) 2.0=++ ht τς  

 
(iii) Response analysis  
     The dynamic response of the shell is computed by 
the step-by-step integration method8). The equations 
are shown as follows. 
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β : acceleration coefficient ( )41=  
h : small time interval ( )002.0=  

 
(iv) Learning 
     During the control, the neural network makes 
learning sequentially. The learning regulation is a 
renovation method of the weight of the network. The 
learning means renovating the weight of the network 
using the input data and control results in accordance 
with the learning regulations. The learning regulations 
will renovate the weight in a method in accordance 
with back-propagation. The learning is made by 
changing the weight of the network using the dis-
placement in the case of time ht ++τ . Change of 
the weight is calculated in accordance with the equa-
tion shown below. The value of weights and thresh-
olds are evaluated by Eqs. (18) - (22) and those are 
renovated by Eqs. (23) - (26). η  is equal to 0.0021. 

DE ηδ =                                             (18) 
where 

0i
bD =  

(9) 
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3. Natural vibration 
3.1 Analytical method 
   EISPACK in 1988 is used to solve the eigen value 

problem. EISPACK is a collection of Fortran subrou-
tines that compute the eigenvalues and eigenvectors 
of nine classes of matrices: complex general, complex 
Hermitian, real general, real symmetric, real symmet-
ric banded, real symmetric tridiagonal, special real 
tridiagonal, generalized real, and generalized real 
symmetric matices. In addition, two routines are in-
cluded that use singular value decomposition to solve 
certain least-squares problems11).  
 
3.2 Results 
    Natural frequencies are shown in Table 2 and the 

corresponding natural vibration modes in the vertical 
components are shown in Fig. 7. 
 

Table 2 Natural frequency 
Order 1st 2nd 3rd 

Frequency(Hz) 4.78 6.96 10.02 

 

 
(a) 1st   

 

(b) 2nd   

 

(c) 3rd   
Fig. 7 Natural vibration modes 

 
4. Simulation results 

  Fig.8 shows Miyagiken-oki earthquake used for 
input acceleration, where the maximum acceleration 
is enlarged to 2 m/sec2. The control effects are esti-
mated by comparison with non-control results. These 
results are shown in Figs.9 - 21. The meanings of 
symbols, NON, AVG and CONT are as follows: 

NON: Non-control (damping ratio: 0.02) 
AVG: Non-control (damping ratio: 0.1115, 

which is average damping ratio of 
controlled one) 

CONT: Control 

Apex                                                                  Supported end (fixed) 
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Fig.8 Miyagiken-oki earthquake, 

Japan, UD, June 12,1978 
 

4.1 Maximum displacements 
 Figs. 9 and 10 show the maximum displacements 

in the vertical and horizontal directions, respectively.  
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Fig. 9 Vertical displacements *u  
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Fig. 10 Horizontal displacements *w  

 
4.2 Maximum stresses 
     Figs. 11 and 12 show the maximum axial forces 

SN  and θN , and Figs. 13 and 14 show the maxi-
mum bending moments SM  and θM , respectively. 
The node 13 has the maximum value in Figs 9 and 10. 
Table 3 shows values of SN , θN , SM and θM at 
the node 13. 
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Fig. 11 Axial force SN  
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Fig. 12 Axial forces θN  
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Fig. 13 Bending moments SM  
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Fig. 14 Bending moments θM  
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Table 3 Comparison of stresses at node 13 
 NON AVG CONT 

SN (N/m) 79160 70583 69819 

θN (N/m) 143490 125780 12428 

SM (N･m/m) 16931 11984 11933 

θM (N･m/m) 931.72 819.80 815.15 
 
4.3 Time history and average of damping ratio 
Time history of the damping ratio is shown in Fig.15. 
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Fig. 15 Time history of damping ratio 

 
Non-controlled damping ratio: 0.02 
Average of controlled damping ratio: 0.1115 
 
4.4 Time history of damping force 

   The damping force of the damper is computed by 
Eq. (26). Time histories of the damping ratios are 
shown in Figs.16 - 18. 
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where 
dF : damping force of damper 

1ω  : the first natural circular frequency 
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14m : mass at node 14 
*
14u& : velocity at node 14 in the vertical direc-
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Fig. 16 Time history of damping force  

at node 14 (NON) 
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Fig. 17 Time history of damping force 

at node 14 (CONT) 
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Fig. 18 Time history of damping force 

 at node 14 (AVG) 
 
4.5 Time history of work rate of damping force 

   The work rate of the damping force at node 14 is 
computed by Eq. (27). Time histories of work rates of 
damping force are shown in Figs. 19 - 21. 

*
14uFW d &⋅=Δ                               (27) 

: NON 

: CONT 

: AVG  
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Fig.19 Time history of work rate 

of damping force at node 14 (NON) 
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Fig.20 Time history of work rate 

of damping force at node 14 (CONT) 
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Fig.21 Time history of work rate 

of damping force at node 14 (AVG) 
 
5. Observation 
     The following analytical results are obtained from 
the research. 
1) With respect to the maximum response displace-
ment in the vertical and horizontal directions, the con-
trolled (CONT) results are reduced by 11% of the 
non-controlled (NON) ones, and by 2% of the AVG 
results. 
2) With respect to the maximum stresses of Ns , Nθ , 
Ms and Mθ, the CONT results are reduced by 12% of 

the NON ones, and by 2% of the AVG ones. 
4) With respect to the maximum damping force, the 
CONT result are 5.8 times of the NON ones, and 1.2 
of the AVG ones. 
5) With respect to the work rate of damping force, the 
CONT results are 4.7 times of the NON ones, and 1.2 
of the AVG ones. 
6) With respect to the time history of displacement 

*
14u  and the work rate of damping force WΔ  rela-

tion, WΔ  of the CONT results is greater than those 
of the NON and AVG ones when displacement *

14u  
is small.  
 
6. Conclusions 

  The displacements and stresses in the shell under 
the CONT are smaller than those of the NON and the 
AVG. 

   The vibration control in the shell with neural net-
works proposed in this paper restricts the displace-
ments and stresses in the shell. 
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