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ABSTRACT 
 
In the paper a procedure is presented to analyse pin-jointed double-layer space frames fitted to 
a flat surface. The change of state of the structure under continuously increased one-parameter 
load of arbitrary arrangement is described up to the first occurrence of buckling or braking of 
bars. The force in the buckled bars, with good approximation, is considered constant, and the 
load can be increased further, while additional bars buckle or break. The redundancy, and so 
the whole stiffness, of the structure decreases with the increase of the number of the buckled 
or broken bars. The one-parameter load can be increased until the structures will be statically 
overdeterminate. It means the collapse of the space frame. 
 
MODEL OF THE GRID 
 
The trihedron plays a significant role in the numerical description of the assembly [3]. A 
trihedron is defined by three non-coplanar bars having one end point in common that is 
considered as starting point of the bars in the trihedron. In Fig. 2, bars in a trihedron at each 
node are shown by arrows pointing outwards from the node. The assembly built up from these 
trihedron bars does not constitute necessarily a statically and kinematically determinate 
structure (Fig 1). The “number of bars multiplied by three equals the number of internal 
nodes” is a necessary but not sufficient condition of the statical and kinematical determinacy. 
This can be decided by the determination of the rank of the equilibrium matrix. 

Figure 1. 
 
The structure in Fig. 2 has 24 internal nodes, 13 external nodes, 3⋅24=72 trihedron bars and 16 
additional bars. The additional 16 bars (thick lines in Fig. 2) in the structure are redundant. 
Therefore, the model in the unloaded state is at least 16 times statically indeterminate. 



The equilibrium matrix of the assembly can be partitioned as: 
 G=G11+G12 (1) 
G11 is the non-singular equilibrium matrix of the subassembly composed of the trihedron bars, 
G12 includes the redundant bars. The equilibrium equation of the grid is: 
 0=+• qsG  (2) 

 
Figure 2. 

 
We need the inverse of submatrix G11: 
 
 1

1111
−=GQ  (3) 

 
This can be made without filling the whole matrix G11. First the hyperdiagonal of Q11 is 
produced with the help of the unit vectors of bars. 

The first 3×3 submatrix is the inverse of that of the unit vectors of trihedron bars associated to 
the first internal node, the second submatrix associated to the second internal join can be made 
in the same way as the previous submatrix, etc. With this technique the positive unit vectors in 
G11 are built into the inverse matrix. The negative unit vectors of bars connecting internal 
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joints are taken into account barwise by the Sherman-Morrison formula [1]. Proceeding, we 
produce the inverse of the equilibrium matrix supplemented by a dyad 
 
 ( ) dTT /111111

1
11 QhfQQhfG •••−=•+

− , (4) 
where 
 01, 11

1
1111 ≠••+== − fQhGQ Td . (5) 

 
In the case of the rth trihedron bar, if we denote its end point by j (internal node), then in the 
jth subvector of column vector f, is the unit vector of rth bar multiplied by –1. The rth element 
of row vector hT is 1, the other elements are 0. If d=0 then the matrix G cannot be 
supplemented by the next dyad, therefore the rank of Q (or rather of )( ThfG •+ ) decreases 
by 1. 
 
THE PROCESS OF LOADING 
 
At the internal nodes, arbitrary one-parameter load can be applied. In the example, at the 
nodes of the upper layer, we used uniform vertical forces pointing downwards. If force in bar 
attains the buckling force, then the bar will buckle. The buckled bar is replaced with its 
constant buckling force, applied at the two end points, acting along the straight line 
connecting the end points of the bar. This force is considered as external load which is kept 
constant until the distance between the end points of the buckled bar reaches again the length 
of the bar prior to buckling. These “external” buckling forces do not change during the 
increase of the one-parameter load.  
If the buckled or broken bar is a redundant bar, then the trihedron bars are unchanged. On the 
other hand, if a trihedron bar is buckled or broken, then we supplement the incomplete 
trihedron so that we replace the missing bar with the nearest redundant bar directly or with the 
help of a chain of rearranged trihedra leading to the nearest redundant bar (Fig. 3). The matrix 
Q11 changes in one step with the addition of a hyperdyad: 
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 0)det(;0)det(;; 1111

1
1111 ≠≠••+== − DGFQHEDGQ . 

 

 
Figure 3. 
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Number of rows of H and number of columns of F are identical to the number of trihedra 
involved with rearrangement.  
The redundancy is decreased if a bar is buckling whether the buckled bar was a trihedron or a 
redundant bar. The process of loading can be continued until the next buckling or breaking. 
The process is stopped if there are no more redundant bars, or with all redundant bars 
det(D)=0. Then the grid is statically overdeterminate, the grid is working as a mechanism. The 
advantage of the algorithm is that the last inverse matrix Q11 can be used also in the analysis 
of mechanisms (finite displacements of kinematically indeterminate bar structures) [6][7]. 
 
CONCLUSION 
 
The equation matrix of the trihedron bars can modify simply due to the Sherman-Morrison 
formula [1]. With tracing the change of state we can study the behaviour of the assembly. By 
arbitrary load pattern it can be investigate the assignment of the bars, configuration of the 
grids, where must be adding more bars, where expedient to increase the stiffness of bars [4]. 
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