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Abstract 
 
The present investigation proposes a set of column strength curves for the members in the 
reticulated domes. The column strength curves are prepared for proportioning of the 
member cross sections in single layer reticular shells considering the elasto-plastic 
behaviors, the member instability and the global shell buckling with imperfection sensitivity 
together with the bending rigidity for connection at nodes.  
 
In the procedure, first, (1) a linear elastic analysis is necessary to obtain the stresses in each 
member under ultimate design loads, second, (2) a second-order elastic  analysis is 
required, but a single time, to estimate the second order effects of deformations on stresses, 
especially on bending moments and to estimate equivalent buckling slenderness ratio of 
each member. Third, (3) the column strength curves are applied to estimate the axial 
strength of each compressive member. The fundamental parameters for the column strength 
are the equivalent slenderness ratio for column buckling and the knockdown factor for 
reflecting shell-like buckling.  Fourth, (4) the cross section of each member is proportioned 
based on the stability check by using the column strength and as well as on the strength 
check by using strength interaction between the axial force  and  bending  moments. 
 
1.  Concept of Column Buckling Strength and Knockdown Factor 
 
Shallow reticular domes behave almost similarly to continuum shells and are often 
subjected to geometrical nonlinearities and imperfection sensitivities before critical states. 
Their elastic stability has been much investigated based on not only a shell analogy but also 
a direct nonlinear analysis of reticular domes using FEM. However, there are very few 
investigations on how the member cross sections of reticular domes should be proportioned 
against elasto-plastic buckling under design ultimate loads.  
 



1.1 Column buckling in tall buildings 
Consideration of elasto-plastic buckling of a mild steel column under compression without 
eccentricity gives a column strength curve, for examples, the curves illustrated in Fig.1.      
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 Fig.1 Column strength curves for      Fig.2  Modified   Dunckerley  Curve  
       straight columns                    based on IASS recommendation2 
 
 
The curves are expressed in terms of the generalized slenderness, Λ  , being a main 
parameter described as follows. 
 
      Λ =

Ny

NCR
LIN                       (1) 

 
where we need the linear buckling axial force  N CR

LIN   and the axial plastic capacity 
N y . 
 
In ordinary design of columns, both the quantities, N CR

LIN  and N y  are calculated 
based on design recommendations. N y  must be still same in case of reticular shells 
and then we have a question on how we calculate the linear buckling axial forces for 
the members in reticulated shells. And again we meet a problem on how we define 
those column strength curves for reticular shells with shell-like imperfection 
sensitivity and with semi-bending rigidity at nodal connections. 
 
The shell buckling with imperfection sensitivity is reflected in design curves1) for 
shells under normal pressure by using a knock down factorα0 . Two ways might be 
possible for expressing the imperfection effects for reticular shells on the basis ofα0 . 
One is a way by which the shell slenderness is expressed as follows.  
 

         Λ S =
N y

α 0NCR
LIN( )                                         (2) 

 
And if in this way, a same design curve similar to those for straight columns of 
buildings might be available. 
 



 
1.2 Modified Dunckerley formula for shell-like buckling based on a knockdown 
   factor 
An alternative way is to base the method on the concept of IASS recommendation on 
reinforced concrete shells and folded plates2) (IASS 1979), that is, the modified 
Dunckerley method in the recommendations. The equation can be expressed by Eq(3) 
and can be drawn in Fig.2.  
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1.3  Previous  studies  for  knockdown  factors  of  the  column strength 
    for  the  members  of  reticular  shells 
Several investigations3,4,5,6,7,8) for reticular domes under vertical loading have revealed 
that the elasto-palstic buckling loads, Pcr per node, can be interpreted as the axial 
compressive capacity, Ncr/Ny, in terms of generalized slenderness of a particular 
member which is considered to be most relevant to buckling. The condition that the 
member is most relevant to buckling is interpreted as the condition that the member is 
subjected to yielding faster than any others in the dome. That is, the ratio of the linear 
 

 
Fig. 3  Geometry of reticular dome roofs; θ0 is half suspended angle for members 
on meridians. 
 
buckling stress, N CR

LIN , to the axial capacity, Ny, becomes the large than any others. 
Accordingly, the smallest value Λ  among many members is adopted as the 
representative slenderness as given in Eq.(1). 
 
Fig.4 represents the previous results4,5,6,7) obtained for reticular domical roofs on two 
types of plans, hexagonal and circular as shown in Fig.3, where the connections are 
assumed completely rigid in some cases and semi-rigid in other cases. The slenderness 



ratio of members, λ0 ,  ranges between 30 and 120. The subtended half angle, θ0 ,  
ranges up to 5 degrees. 
 
In Figs. 4.1 and 4.3, rigid-connection at nodes is assumed for end-connections of the 
members in domes. Geometric imperfections of wi=0.2×te , te being an equivalent 
shell thickness, are considered in Figs.4.1 and 4.2. 
 

        t e = 2 3 × rg    ; rg =
Ip

Ap
                (4) 

 
The subtended half angles, θ0  , for members on the meridian of ABC in Fig.3 range 
between 1.0 and 2.5 degrees in the Figs. 4.1 from the results by Kato et al.6) (Kato et al. 
1993) for dome roofs under uniform lateral loading on hexagonal plan, and range 
between 3.0 and 5.0 degrees in Fig.4.3 from the results by Ogawa et al.7)(Ogawa et al. 
1998) also for hexagonal domes under uniform and non-uniform lateral loadings. The 
figures clearly describe the difference between the results for θ0 less than 2.5 
degrees and those for θ0 equal or greater than 3.0 degrees. In case of the domes 
with θ0 equal or greater than 3.0 degrees, we can see that the elasto-plastic buckling 
loads are almost determined due to the member collapse, not due to shell buckling,  
since the calculated column strength curves are almost coincide with the squash line, 
that is 1.0, or the linear elastic buckling curve, 1/ Λ2 . The equivalent buckling 
length ,Fig.b, based on linear buckling analysis, however not fully shown in the 
present paper, tends to almost each member length irrespective of θ0  and λ0  when 
θ0  is equal or greater than 3.0 degrees. 
 
The Fig.4.2 represents the results5) (Kato et al. 1994) in case of domes with semi-rigid 
connection at nodes on circular plan, which are assumed to be under uniform lateral 
loading. In the case of semi-rigidity of connection, the modified generalized 
slenderness, Λ mod , is adopted described by the following equation. 
 
          Λ mod = Λ 1/ ε κ( )   ; 

 
κ = KB / EIP

l0

⎛ 
⎝ 

⎞ 
⎠                       (5) 

 
where the parameters KB, EIp and  l0   represent the bending rigidity for connection, 
member bending rigidity and member length, and κ  represents the rigidity ratio of 
the bending spring to member bending rigidity. 
The quantity ε κ( ) stands for the effect5) (Kato et al. 1994) to show the ratio of 
buckling load decrease due to semi-rigidity at connection and is approximately 
represented by the following equation. 
 
 
 
 
 



Fig. 4.1  Column strength curves for different half suspended angles θ0    
           in case of the domes in Fig.3.1 (Kato 1993, Shibata 1992) 
 
 

Fig.4.2 Column strength curves for domes   Fig.4.3 Column strength curve for 
domes 
composed of members semi-rigidly         with θ0  equal or greater than 3.0 
degrees   
connected at nodes(Kato 1994, 1995)        (Ogawa 1998) 
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Fig.4.2  proves that the column strength curves are almost same as the ordinary ones 
for rigid connections when the modified generalised slenderness Λ mod  is adopted to 
express the column strength. 
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1.4  Interpretation of equivalent buckling length based on the generalized 
     slenderness 
 
The generalized slenderness can be related to the equivalent buckling half wave length 
    lCR ,  as similarly to ordinary straight columns under compression. 
 

        
  
Λ = lCR

ly
     ;  

  
ly =

π 2EI p
Ny

                           (7) 

 
When lcr is identified for every member in reticular domes, accordingly dimensioning 
of members in domes might be possible, as similarly to the members in tall buildings, 
based on the generalized slenderness Λ. The examples for equivalent buckling length 
calculated by linear buckling analysis are shown in Fig. 6,  where  a parameter ξ  
is used for representing shell-likeness.  
 
        ξ = 12 2

θ0λ0 1 + 2
k( )[ ]                                     (8) 

 
For the parameter ξ  less than 5 under a condition that κ is greater than 4, the 



equivalent buckling length is almost same as the member length, leading that, in these 
cases, reticular domes buckle not as shells but buckle like straight columns in tall 
buildings.  
 
2.  Proposal  of  Column  Buckling  Strength for  Reticular  Domes and   
    Proportioning  of  Members  against  Buckling 
 
2.1 Column strength curves for reticular domes 
 
According to the discussions on previous researches, the column buckling curves for 
each  member constituting domes may be defined as follows.  
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Table 1 α o for  reticular  domes  

interpolationinterpolation

θ o≦ 2.5 deg. θ o≧ 3.0deg.2.5deg.≦θ o≦ 3.0deg.

neglegible

geometric
imperfection

0.65 0.75interpolation

intermediate
imperfections

interpolation

geometric

imperfection
wi=0.2 te

0.650.55 interpolation

 
 
and the knockdown factor α0  may be classified as follows approximately illustrated 
in Table 1. However, we need more discussions on the appropriate values for the 
knockdown factors and on how to assume the equivalent buckling length for each 
constitutive member of domes and on the factors of safety.  
 
Second-order elastic analysis for equivalent buckling length: We consider an 
approximate method for assuming the equivalent buckling length. We will adopt a 
second-order elastic analysis. The procedure is explained as follows.  



 
(1) Assumption of the ultimate design load per nodes,  Pult,  based on a nominal 
dead 
load and other loads in issue. 
(2) Execution of a first-order elastic analysis to obtain axial forces Nd, bending 
moments 
Mdy and Mdz about y and z  axes of each member, under the ultimate design load.  
 
    KL[ ] d{ } = Pult{ }                                        (EQ-2) 
 
Here ［KL］means the linear stiffness matrix of first-order. 
(3) Execution of second-order elastic analysis, but a single time, to estimate the P − Δ   
effects of nonlinearities on the axial forces and bending moments under Pult.  
 
        [ ] ( )[ ][ ]{ } { }ultultGL PdPKK =+                              (EQ-3) 
 
where KL[ ]+ K G Pult( )[ ] is the secant stiffness matrix at the loading level of Pult. 
From the displacement d in (EQ-3), the axial forces  Nd* and mending moments 
Mdy* and Mdz* are calculated. By adopting the bending moment Mdy* around an 
strong  axis,  the approximate linear buckling axial force N CR

LIN   is calculated as 
follows8,9) (Kato et al 1997,1998). 
 
     { } dy

*
dydydy

*
dyd

LIN
CR MM/MMMNN −+−=                 (EQ-4) 

 
If N CR

LIN   is greater than the Euler buckling load Ne for a member with a buckling 
length equal lo its member length, N CR

LIN   is replaced by Ne. Then the generalized 
slenderness Λ mod  is calculated, given below, for each member.  
 

       Λ mod = Λ 1
ε κ( )  ; Λ =

Ny

NCR
LIN  ; 
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        (EQ-5) 

 
where Eq.6 is used to evaluate the reduction of buckling loads due to semi-rigidity of 
connection. 
 
 
 
 
Dimensioning of members: 
 
The cross section of each member is dimensioned by the following two equations; one 
is the strength check and the other is the stability check. 
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    Stability check     N d
N CR

LIN ≤ 1.0                            (EQ-6) 
 
where Mpy and Mpz are the plastic moments for the y and z axes. 
 
For the dimensioning another judgements will be required especially for members with 
so small axial forces and bending moments. In the present procedure, following 
judgements are provided to ensure smooth continuity of member rigidity.  
 
       N d(min) = γ × Nd(max)      ;    N d(min) = γ × Nd(max)   
       M*

dy(min) = γ × M*
dy(max)   ;    ( )dy

*
dy(max)

* MMax=M             (EQ-7) 
       ( )dz

*
dz(max)

* MMax=M   ;    ( )dz
*

dz(max)
* MMax=M  

 
Here some consideration is needed to define the magnitude of γ , a value around 0.5 
being recommended in the present paper based on the previous studies8.9) (Kato et al.  
1997, 1998). 
 
The factors for safety: 
On what values for examples Se and Sp in IASS recommendation  should be 
recommended in actual design as the factors of safety,  is an actual issue to be 
discussed, and an alternation is to adopt the values recommended in some appropriate 
ones such as IASS recommendation.  
 
3.  Conclusions on Feasibility of the Proposed Procedure for Reticular Domes 
 
The discussions covering the definition of column strength together with the 
assumptions for both the knockdown factors and slenderness ratios prove the present 
proposal to be effective for designing reticular domes under ultimate design loads. 
Several examples8,9) have revealed that the reticular domes designed by a similar 
procedure to the present one, but with a little different knockdown factors, satisfy, to a 
great extent, the required ultimate design loads. 
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