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ABSTRACT: Natural frequencies and buckling stresses of thick circular cylindrical 
shells calculated by using the previously published thin shell theories are usually 
overpredicted. A two-dimensional higher-order shell theory is applied to the 
vibration and buckling problems of a simply supported cylindrical shell subjected to 
axial stresses. Shear deformations and thickness changes have important effects on 
the natural frequencies and buckling stresses of thick circular cylindrical shells with 
or without axial stress. 
 
1.  INTRODUCTION 

A great many significant contributions can be found on vibration and buckling 
problems of circular cylindrical shells in the literature based upon two-dimensional 
shell theory. Most of them have been done for thin circular cylinders and very little 
for thick cylinders. Usually, two approaches have been used to analyze thick shell 
structures, i.e. one is based on the three-dimensional elasticity theory and the other, 
approximate two-dimensional shell theory. 

It is very complicated to obtain effective solutions of the three-dimensional 
vibration and buckling problems of thick elastic shells and therefore few papers 
dealing with such problems of thick circular cylindrical shells have appeared. Based 
on the three-dimensional theory of elasticity, Armenàkas et al. [1] presented a 
volume containing tables of natural frequencies and graphs of representative mode 
shapes of harmonic elastic waves propagating in an infinitely long isotropic hollow 
cylinder. The tables may be used directly in obtaining the frequency of standing 
waves propagating in simply supported shells of finite length. A finite element 
method was presented by Bradford and Dong [2] for the vibration and stability 
analyses of initially stressed orthotropic cylindrical shells. The formulation is 
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capable of treating a three-dimensional initial stress state which is radially 
symmetric. 

In order to take into account the influence of transverse shear deformation and 
rotatory inertia, a number of authors derived modified shell theories in the past. 
Mirsky and Herrmann [3] developed a Timoshenko-Mindlin-type shear deformation 
theory by introducing the shear correction coefficient κ 2 , as was done in 
Timoshenko beams and Mindlin plates. The dynamic shear coefficients were 
determined by considering the thickness-shear motions in axial and circumferential 
directions, respectively. By expanding the shell displacement components in power 
series of the thickness coordinate, there exist approximate two-dimensional shell 
theories. Upon using certain truncations of the power series, a higher-order shell 
theory which can take into account the first order effects of transverse shear 
deformations have been applied to cylindrical shells by Bhimaraddi [4]. Based upon 
a realistic parabolic variation for shear strains with zero values at the external 
surfaces, the shear correction factors are not required in the theory. Transverse 
normal strain is assumed to be zero and transverse normal stress in the direction of 
the shell thickness is excluded. However, two-dimensional higher-order theories of 
circular cylindrical shells which take into account the complete effects of shear 
deformations with thickness changes and rotatory inertia have not been investigated. 
Recently, it has been pointed out that neglecting higher-order deformations such as 
shear deformations and thickness changes will lead to an overprediction of the 
natural frequency and buckling stress for shallow circular arches (Matsunaga [5]) 
and thick circular rings (Matsunaga [6]). 

This paper presents a two-dimensional higher-order theory of thick circular 
cylindrical shells which can take into account the complete effects of both shear 
deformations with thickness changes and rotatory inertia. Several sets of the 
governing equations of truncated approximate theories are applied to the analysis of 
vibration and buckling problems of a simply supported circular cylindrical shell 
subjected to axial stresses.  Natural frequency and buckling stress for a simply 
supported circular cylindrical shell subjected to axial stress can be expressed 
analytically with reference to the corresponding natural frequency for the shell 
without axial stress. It may be noticed that the two-dimensional higher-order shell 
theory in the present paper is useful for vibration and buckling problems of very 
thick circular cylindrical shells.  
 
2. FUNDAMENTAL EQUATIONS OF CIRCULAR CYLINDRICAL SHELLS 

Consider a circular cylindrical shell of mean radius of curvature R, thickness H 
and length L. A curvilinear coordinate system (x, y, z) is defined on the middle 
surface of the circular cylindrical shell, where the x-axis is taken along the middle 
surface in the circumferential direction with the y-axis in the axial direction and the 
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z-axis in the direction normal to the tangent to the middle surface. The dynamic 
displacement components in a shell are expressed as 

u u x y z t v v x y z t w w x y z t= = =( , , ; ), ( , , ; ), ( , , ; )             (1) 
where t denotes time. The displacement components may be expanded into power 
series of the thickness coordinate z as follows : 
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2.1. Strain-displacement relations 
Strain components may be expanded as follows : 
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where Greek lower case subscripts indicate the coordinate x or y. 
Strain-displacement relations can be written as (Yokoo and Matsunaga [7]) 
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where a comma indicates partial differentiation with respect to the coodinate 
subscripts that follow. No restrictive assumptions are made concerning the order of 
H/R. 
 
2.2. Equations of motion 
  Consider a true cylindrical shell subjected to a uniformly distributed initial axial 
stress s0  which is assumed to be constant in the axial direction. Since it is assumed 
that the initial deformation due to the axial stress is axisymmetric and is uniformly 
distributed in axial direction, there is no influences of the initial deformation in the 
present problem. Introducing stress components sαβ , s zα  and szz , Hamilton's 
principle is applied to derive the equations of dynamic equilibrium and natural 
boundary conditions of a shell. An additional work due to the initial axial stress 
which is assumed to remain unchanged during vibration and/or buckling is taken into 
consideration. Both the outer and inner surfaces of a shell are assumed to be traction 
free. The principle for the present problem may be expressed for an arbitrary time 
interval t1  to t2  as follows : 
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where the over dot indicates partial differentiation with respect to time and ρ  
denotes the mass density; dV, the volume element. The volume element is given in 
terms of normal curvilinear coordinates defined for the middle surface S by 

dV= μ dzdS,   μ =1− z
R

.                            (6) 

The initial axial stress is assumed to be expressed as the following power series : 
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By performing the variation as indicated in eqn (5), the equations of motion are 
obtained as follows : 

δ

ρ

u N
R

N N
R

N n Q n
R

Q

s u f n m l u f n m

n
xx

n
xx

n

x
xy

n
xy

n

y
x

n
x

n

l

ml
yy

m m

m

( ) ( ) ( )

,

( ) ( )

,

( ) ( )

( )

,

( ) ( )

: ( ) ( )

( ) && ( )

− + − − +
−

+ + + + = + +

+ + −

=

∞

=

∞

=

∞

∑∑ ∑

1 1 1

1 1

1 1 1

0
00 0

            (8) 

δ ρv N N n Q s v f n m l v f n m
n

xy
n

x
yy

n

y
y

n l

ml
yy

m m

m

( ) ( )

,

( )

,

( ) ( )

,

( ) ( )
: ( ) && ( )+ − + + + + = + +

−

=

∞

=

∞

=

∞

∑∑ ∑
1

0
00 0

1 1     (9) 

δ

ρ

w
R

N
R

N Q Q n T

s w f n m l w f n m

n
xx

n
xx

n
x

n

x
y

y

n n

l

ml
yy

m m

m

( ) ( ) ( ) ( )

, ,

( ) ( )

( )

,

( ) ( )

: ( )

( ) && ( ).

1 1

1 1

1 1

0
00 0

− + + −

+ + + + = + +

+ −

=

∞

=

∞

=

∞

∑∑ ∑
              (10) 

The stress resultants are defined as follows : 
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The following functions are defined as 
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2.3. Constitutive relations 
For elastic and isotropic materials, the constitutive relations can be written as 

s xx
xx yy zz= + + +( ) ( )2μ λ γ λ γ γ ,   s yy

yy xx zz= + + +( ) ( )2μ λ γ λ γ γ  

s sxy yx
xy= = 2μγ ,   s xz

xz= 2μγ ,   s yz
yz= 2μγ            (14) 

szz
zz xx yy= + + +( ) ( )2μ λ γ λ γ γ  

where Lamé's constants μ  and λ  are defined by using Young's modulus E and 
Poisson's ratio ν  as follows : 

μ ν λ ν ν ν= + = + −E E/ ( ), / ( )( ).2 1 1 1 2               (15) 
 
2.4. Boundary conditions 
  For the equations of boundary conditions along the boundaries on the middle 
surface : 
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are to be prescribed. 
 
2.7. M th order approximate theory 
  The equations of motion and boundary conditions can be expressed in terms of 
displacement components. Since the fundamental equations mentioned above are 
complex, approximate theories of various orders may be considered for the present 
problem. A set of the following combination of displacement components for Mth 
( M ≥ 1) order approximate equations is proposed : 
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where m M= 0 1 2 3, , , , ,L . 
The total number of the unknown displacement components is ( )6 1M − . In the 

above cases of M = 1, an assumption of the normal strain γ zz = 0  is inherently 
imposed. Another set of the governing equations of the lowest order approximate 

theory ( )M = 1  is derived with the use of an assumption that the normal stress szz  
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is zero. 

Under the assumption of plane state of stresses, the shear strains γ xz  and γ yz  

must vanish through the thickness of a shell and the lowest order approximate theory 
reduces to the classical shell theory. 
 
3. FOURIER SERIES SOLUTION FOR CIRCULAR CYLINDRICAL SHELL 
  A simply supported circular cylindrical shell subjected to initial axial stress is 
analyzed for natural frequencies and vibration modes. Following the Navier solution 
procedure, displacement components are assumed for the circumferential wave 
number r ≥ 1 as 
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where the displacement mode number r = ∞1 2 3, , , ,L  and s = ∞1 2 3, , , ,L , ω  
denotes the circular frequency and i, the imaginary unit. When the circumferential 
wave number r = 0 , the following two types of displacement mode may be 
assumed : 
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Equations (19) and (20) correspond to torsional and axisymmetric vibration modes, 
respectively. 
  The equations of motion are rewritten in terms of the generalized displacement 

components u vrs

n

rs

n( ) ( )
,  and wrs

n( )
. The present theory yields ( )6 1M − -frequencies for 

each combination of the displacement mode numbers r and s.  In the following 
analysis, the axial stress is assumed to distribute uniformly in the thickness direction. 

Only the first term of the expanded axial stress (7) is considered, i.e. s s0 0

0
=

( )
. 

The dimensionless natural frequency and the initial axial stress in the y-direction 
for vibration problems are defined as follows : 
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where G is the shear modulus and Pc  is the minimum classical buckling load for the 
bending problem of a simply supported straight beam of length L with circular 
cross-section of radius R defined by 
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4. EIGENVALUE PROBLEM OF A THICK CIRCULAR CYLINDRICAL SHELL 
  The equations of motion can be rewritten by collecting the coefficients for the 
generalized displacements of any fixed values r and s. The generalized displacement 
vector {U} for the Mth order approximate theory is expressed as 
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Eigenvalue problems to determine the natural frequency are generalized as follows : 

([ ] [ ]){ }K M U− =Ω2 0                                (24) 

where matrix [K] denotes the stiffness matrix which contains the effects of initial 
axial stress and matrix [M], the mass matrix. 
  In order to analyze the eigenvalue problems, eqn (24) may be rewritten as 
follows : 

([ ] [ ] [ ]){ } det ([ ] [ ] [ ])K M I U K M I− −− = → − =1
2

1
2

1 0 1 0
Ω Ω

       (25) 

where  matrix [ ]I  denotes unit matrix. 

 The matrix [ ] [ ]K M−1  is called the dynamic matrix in the vibration problem. The 

power method is used to obtain the numerical solution of the eigenvalue problems. 
Although all the eigenvalues and eigenvectors can be computed by this method for 
each deformation mode of r and s, the dominant eigenvalues which correspond to the 
lower natural frequencies are of most concern. 
 
5. NUMERICAL EXAMPLES 
5.1. Numerical examples 

Natural frequencies of a thick elastic circular cylindrical shell with simply 
supported boundaries are analyzed in the following numerical examples. When the 
natural  frequency goes to zero under axial compressions, elastic buckling occurs 
and the buckling stress can be obtained. Since no restrictive assumptions are made 
concerning the order of thickness-curvature ratio, the upper bound of this parameter 
is taken to be H R/ .= 10 . The length parameter L R/  is varied from 1 to 20 for 
short to long circular cylindrical shells. Poisson's ratio is fixed to be ν = 0 3. . All the 
numerical results are shown in the dimensionless quantities. 
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5.2.Convergence and comparison of natural frequency and buckling stress 

In order to verify the accuracy of the present solutions, the convergence properties 
of the first natural frequency of circular cylindrical shells without axial stress and 
buckling stress for the displacement mode r s= = 1 are shown in Table 1. A direct 
comparison of the present solutions with those from the classical shell theory (CST) 
in which the effects of extension and rotatory inertia are included is made. The 
present results are also compared with those of a first order shear deformation theory 
(FST) which corresponds to the Mindlin plate theory in which a shear correction 
factor κ 2  is introduced to correct the contradictory shear stress distribution over 
the thickness of the shell. The present results for M = −1 4  converge accurately 
enough within the present order of approximate theories. 
 
5.3.  Natural frequency and buckling stress 
  In the case of a simply supported circular cylindrical shell subjected to initial 
axial stress Λ , the natural frequency Ωa  can be expressed explicitly with 
reference to the natural frequency Ω0  of a shell without axial stress. 
 The relation between Ωa  and Ω0  can be obtained from a comparison of the 
equations of motion as follows: 
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Table 1. Convergence of solutions and comparison with previously published results 

( L R i j M/ , . , ,= = = = = −2 0 3 1 1 5ν ) 
H/R Ω/Λ CST FST M=1  M=1† M=2 M=3 M=4 M=5 
0.05 Ω 0.04848 0.04848 0.05014 0.04848 ← ← ← ← 
 Λ 0.02376 0.02376 0.02541 0.02376 0.02375 ← ← ← 
0.10 Ω 0.09739 0.09740 0.1008 0.09741 0.09736 ← ← ← 
 Λ 0.04793 0.04796 0.05134 0.04796 0.04791 ← ← ← 
0.20 Ω 0.1981 0.1981 0.2054 0.1982 0.1978 ← ← ← 
 Λ 0.09919 0.09926 0.1006 0.09928 0.09889 ← ← ← 
0.40 Ω 0.4207 0.4178 0.4354 0.4189 0.4163 ← ← ← 
 Λ 0.2236 0.2213 0.2395 0.2217 0.2190 ← ← ← 
0.50 Ω 0.5460 0.5381 0.5622 0.5405 0.5361 0.5360 ← ← 
 Λ 0.3014 0.2942 0.3195 0.2953 0.2905 0.2904 ← ← 
0.80 Ω 0.9836 0.9387 0.9871 0.9492 0.9365 0.9360 ← ← 
 Λ 0.6113 0.5638 0.6156 0.5692 0.5541 0.5535 ← ← 
1.00 Ω 1.3207 1.2354 1.3045 1.2552 1.2337 1.2327 ← ← 
 Λ 0.8816 0.7857 0.8600 0.7963 0.7692 0.7679 0.7680 0.7681
CST : Classical shell theory. 
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FST: First order shear deformation shell theory (shear coefficient κ 2 5 6= / ). 
M = 1 : Transverse normal strain γ zz = 0 . 
M = 1†: Transverse shear stress s zα = 0  (FST, κ 2 1= ). 

 
When the natural frequency Ωa  goes to zero under the axial stress Λ , elastic 
buckling occurs and the critical buckling stress Λ cr  relates with the natural 
frequency Ω0  as 

Λ Ωcr s
H
R

L
H

= −
+

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟

4
1 2 4

3 4

0
2

( )
.

ν π
                          (27) 

The critical buckling stress of simply supported circular cylindrical shells subjected 
to  axial compression can be predicted from the natural frequency of the shell 
without axial stress. The calculated critical buckling stresses corresponding to the 
lowest natural frequencies and vibration mode numbers are shown in Table 2. Two 
figures on the right shoulder of the natural frequencies and buckling stresses in Table 
2 show that the first and second figures denote the wave numbers of r and s, 
respectively. These buckling stresses do not necessarily coincide with the lowest 
critical buckling stresses of the shells which may occur at different displacement 
mode numbers from the case of the lowest natural frequencies. 
 
Table 2. Lowest natural frequency with vibration mode numbers and corresponding 

critical buckling stress (M=5) 
     L/R    
H/R Ω/Λ  2 3 4 6 8 10 20 

0.05 Ω  0.0201231 0.0131631 0.0192221 0.00573121 0.00428221 0.00374321 0.00136111

 Λ  0.00409231 0.00886231 0.0168921 0.0268921 0.0474521 0.0885121 0.0187211 
0.10 Ω  0.0563931 0.0348121 0.0240421 0.0164121 0.0143221 0.0100011 0.00272511

 Λ  0.0160731 0.0310021 0.0467321 0.110221 0.265321 0.315911 0.375311 
0.20 Ω  0.139721 0.0880721 0.0681621 0.0478111 0.0297211 0.0200911 0.00547311

 Λ  0.0493221 0.0992321 0.187821 0.467911 0.571411 0.637511 0.756911 
0.40 Ω  0.368621 0.253221 0.178211 0.0972011 0.0603811 0.0408211 0.0111211 
 Λ  0.171721 0.410121 0.642011 0.966911 1.179211 1.315811 1.562411 
0.50 Ω  0.505321 0.331611 0.225811 0.122911 0.0763411 0.0516111 0.0140711 
 Λ  0.258121 0.562711 0.824611 1.236711 1.508011 1.682711 2.001011 
0.80 Ω  0.936011 0.564111 0.380711 0.206111 0.127911 0.0864211 0.0235711 
 Λ  0.553511 1.017711 1.465011 2.173611 2.645611 2.948911 3.509711 
1.00 Ω  1.232811 0.737511 0.495711 0.267711 0.166011 0.112211 0.0306111 
 Λ  0.768111 1.391611 1.987011 2.933711 3.565311 3.976511 4.735511 

 
 
6.  CONCLUSIONS 

 The following conclusions may be drawn from the present analysis : 
(1) The natural frequencies and buckling stresses of thick circular cylindrical shells 



 10

calculated by using the classical thin shell theory are usually overpredicted. It has 
been pointed out that shear deformations and thickness changes have an important 
effect on the natural frequencies and buckling stresses of thick circular cylindrical 
shells. 
(2) In order to verify the accuracy of the present results, the convergence properties 
of the numerical solutions according to the order of approximate theories have been 
examined. Without the assumption of H R/ << 1 , the present results obtained 
for M = 5 are considered to be accurate enough for very thick circular cylindrical 
shells. It may be noticed that the two-dimensional higher-order shell theory in 
thepresent paper can predict the natural frequencies and buckling stresses of a thick 
circular cylindrical shell. 
(3) In the case of a simply supported circular cylindrical shell subjected to axial 
stress, the natural frequency can be expressed explicitly with reference to the natural 
frequency of a shell without axial stress. When the natural frequency goes to zero 
under axial compressions, elastic buckling occurs. The critical buckling stress can 
also be expressed in terms of the natural frequency of a shell without axial stress. 
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