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Abstract 
 
The purpose of this paper is to present a method by which compression shell shapes can be 
obtained by inverting the tension shape obtained by loading a cable net system. A companion, 
triangulated mesh is also produced simply to obtain nodal forces from distributed loads, and 
also for the computer visualization of the surface. This work parallels the physical models used 
by H. Isler for his work on thin concrete shells. The paper gives examples of the mesh shapes 
generated and the computer visualization of several examples. It demonstrates that the 
computer modelling is a suitable alternative to the physical modelling process. 
 
1. Introduction 
 
A shell is a double-curved rigid thin skin structure. Unlike conventional, beam and column 
building design in which the architect defines the structure’s shape and the engineer performs 
the static analysis, in shell design, both aspects are united. This dual task of the design of form 
and structure is a great advantage for aesthetics and strength  and a greater challenge to the 
designer. 
 
Defining the form is the important first step in shell design. The quality of this choice finally 
decides the quality of the building. A perfectly shaped shell is efficient since it carries its loads 
by nearly pure membrane action, whereas a badly shaped shell is hardly able to be saved. There 
are at least two ways of formfinding in free form shell design. These are physical experiments 
and computer modelling. For the former, Heinz Isler [1]-[8] has done a great deal of work while  
the latter approach has  not yet been widely used. Therefore it is of significance to be able to 
form shell structures by computer modelling and to show the possibility that the structures can 
be constructed in practice. 
 
In a forty year period, Heinz Isler and his colleagues have designed and built at least one 
thousand concrete shell structures. The shell shapes are not based on geometric concepts, but 
result from formfinding experiments. The shapes are created automatically by natural laws. 
 
The physical model method by Isler [1] encourages us to look for numerical models in the 
design of arbitrary shapes for compression shell structures. It has been seen that the possibility 
of developing this field is of no doubt. In the present paper computer software is developed to 
simulate these direct experimental processes to show that it is helpful in the creative process of 
shell design.  
 
Firstly it requires an understanding of the shapes Isler has obtained. The shape performance can 
be checked by a geometric non-linear analysis. The shell shapes generated herein are based on 
computer studies. The shapes are created by applying the dominating surface loads on a flat 
cable net acting as a tension structure and then inverting for the shell stresses to be compressive 



rather than tensile. Subsequent analysis of the shell for its service loads will estimate maximum 
stresses from both membrane and bending effects. From the formfinding it has been possible to 
produce a range of shapes similar to those developed by Isler. 
 
2. Formfinding 
 
A finite element mesh of two-node elements is first established within the specified boundary of 
the structure projected onto the horizontal plane. From this flat position, with an initial pre-
stress the mesh is loaded with a uniformly distributed load or internal inflation pressure in the 
reverse direction to the real loads applied to the shell and a geometric non-linear analysis is 
performed. In this way a tension stress membrane is formed. When the loads are reversed, a 
compression membrane is obtained. 
 
The linear two node cable element is the simplest finite element encountered in structural 
analysis. For this element the only pure deformation mode is the elongation of the element. 
Corresponding to this natural deformation mode, a natural force can also be defined. For large 
displacement analysis the tangent stiffness ][ TK  of the element is comprised of two 
components. The elastic stiffness ][ EK  and the geometric stiffness ][ GK , which are derived 
separately in the following, for more detailed description see [9]. 
 
Elastic stiffness 
 
The tangent stiffness, ][ TK  is calculated from the current deflected position, using the updated 
co-ordinates as the reference configuration. Member forces are calculated as the sum of the 
incremental contributions. The theory for the analysis of cable structures in this method is based 
on small deflections from the current position. The vector co-ordinates of the member ends JI ,  
are given by 
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The member direction cosines (current position) are 
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Where l  is the member length. The vector of member displacements is written 
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where  Ir  and Jr  are defined in the same co-ordinate system as the co-ordinate vectors in 
Equation (1). Hence, if { }irΔ  is the increment in { }r  at the i  iteration, then the updated nodal 
co-ordinates of the member are 
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Similarly, the force vectors at the member ends are given by 
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Where NP  is the member force. Thence,   
 

{ } }]{[}]{[][][ iEiNN
T

NN
T

NEi rKrakaPaP
iiii

Δ=Δ=Δ=Δ                                (6) 
 

Where 
o

N l
EAk = , is the member stiffness and 

 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡

−
−

= TT

TT

o
E cccc

cccc
l
EAK

}}{{   }}{{
}}{{}}{{   

                                                     (7) 

 
Geometric stiffness 
 
The member displacement vectors JI rr ,  are resolved into components parallel { ||αr } and 
perpendicular { ⊥αr } to the member. Let I=α or J ,  so that 
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where 
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It is seen that a measure of the rotation of the member is given by { }r , such that 
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where 3I  is 33×  unit matrix. The vectors }{ IGPΔ , { JGPΔ } are the changes in the global 
components due to the rotation. Then 
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This is the equation for the ith  iteration, 
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Combining Equations (6) and (13), 
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Finally, [ ]TK  is written as the 66×  partitioned matrix: 
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Where, 
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Newton-Rhapson type iteration is carried out for the iterative calculations and the displacement 
criteria is adopted in the formfinding procedure. In this process, since the deflection increments 
are always calculated from the current position, it is important that a starting position near the 
next calculation is used, so that [ ]TK  is a good estimate of the tangent stiffness. In the form 
finding process it is convenient to chose an initially plane configuration as the initial position. 
 
The geometry obtained is examined to see if the required height for the structure has been 
reached and if the required shape has been formed. Otherwise it is necessary to adjust some of 
the input data parameters. From experience usually after a few iterations satisfying results can 
be obtained. With the cable model a companion triangular surface model is also produced in 
order to calculate the node loads on the cable system for distributed loads and also to be able to 
represent the geometric continuity of the membrane surface for graphic presentation. 
 
The blending of the specified pre-stress with the elastic stresses from the imposed 
displacements will then determine the resulting curvatures of the surface. Using a high elastic 
modulus, the elastic stresses will dominate and may completely overshadow the effect of the 
specified pre-stress. Lower elastic modulus will result in increasingly more pronounced radial 
curvature.  
 
By using the orthotropic material property in the formfinding analysis further fine adjustment to 
the curvatures of the surface is possible. By making the traverse or hoop stiffness greater than 
that of the longitudinal or radial, it is possible to induce more stresses in the traverse or hoop 
direction and this results in an increase in longitudinal or radial curvature. 
 
 
 



3. Some computer models 
 

Figure 1                                                                   Figure 2 

 
Figure 3                                                                   Figure 4 
 

 
Figure 5                                                                                   Figure 6 
 
 
 
 
 
 
 
 



Figure 7                                                                   Figure 8 
 

Figure 9                                                                   Figure 10 
 

Figure 11                                                                 Figure 12 
 
Figure 1 shows the image of a ring-shaped shell of pneumatic type which is modeled on Isler's 
shell for a large warehouse. Figure 2 shows the formfinding stage for one leaf of the shell.  The 
Young’s Modulus is increased in the elements along the two radial edges. This makes these 
edge elements more stable. Then the curvature of the shell is increased near the edge. 
 
Figure 3 and Figure 7 show the images of two square shells. Figure 4 and Figure 8 present the 
formfinding process. In order to obtain anti-curvature on the edges some edge nodes are given 
additional nodal forces in the vertical direction. 
 



Figure 5 shows the image of a hall for a tennis pavilion in which four elements of 
)(4816 m× are joined. Figure 6 gives its formfinding.  Because of the symmetry only one 

quarter of a shell is modeled. Some fine adjustments are required on the edge elements. A 
sufficiently doubly curved shell with sound and distinct counter-curvatures at the free edges 
usually is able to cope with instability and to carry all load cases. 
 
Figure 9 shows the image of a roof of a swimming pool. This shell has free edges and is 
supported on four points on a square plan. Figure 10 presents the formfinding stage of the roof. 
Due to symmetry only a quarter of the shell need be simulated. As described above, from the 
flat position of the mesh generation, a uniformly distributed load or internal inflation pressure is 
applied and a geometric non-linear analysis is processed until the required height for the 
structure has been reached. To provide edge kick up, nodes on the edges are subjected nodal 
loads, some nodes along the very edge are set with upward forces while downward forces are 
set to some nodes where the curvature should be changed by observing Isler’s shell. 
 
Figure 11 shows the image of a block of four bubble shells of )(20 m  span covering an area of  

)(1600 2m . Figure 12 presents a quarter of the computer model for formfinding of a bubble 
shell. 
 

Figure 13 shows two examples of shells 
(upper four and bottom four) from different 
angles. They change their visual appearance 
totally when seen from the varying view. So 
one can see that shell structures may, more 
than other buildings, offer a great variety of 
changing aspects. 
 
It should be seen that computer models have 
similar characteristics to physical models in 
(1) They are three-dimensional; (2) They are 
analyzed by setting real material; (3)  They are 
visual. 
 
 

Figure 13                                                                                              
 
Compared with physical model  
1. The computer model is simple. Architects and engineers who have engineering background 

and some computer knowledge can easily develop these models whereas the process of 
physical modelling is not so easy to master. It requires experimental work of quite high 
accuracy. 

2. The computer model can save time and energy. It is possible to adjust and modify  
parameters thus giving many possible shapes to view. 

3. Due to the reasons above it seems the computer modelling method has some distinct 
advantages. 

   
Once the desired membrane surface has been obtained, the shell thickness and concrete material 
property are added to form the real shell. To verify the mechanical behavior of the concrete 



shell structure with the shape obtained, the finite element method is employed for the 
calculation of stresses and displacements of the shell. The results we obtained so far are 
satisfactory. As Heinz Isler once said [7], all our computer programs are unproven  intellectual 
fictions until they are proved by physical reality and monitored over a period of time. By 
comparing with his work we bring reality to our fiction. 
 
4. Conclusions 
 
1. Formfinding is one of the most important factors in shell design. Computer modelling 

shows a simple, quick and flexible way to do this. Much of the shell’s success is a function 
of an interplay of aesthetics and mechanics. 

 
2. Computer shell modelling is easy to undertake and also is a sound and creative counterpoise 

to the physical modelling.  
 
3. The deformation patterns calculated on models might be a criterion for qualification of the 

shapes. Thus additional work has to be done to check the shape performance by studying 
geometric non-linear analysis of the real shell. 
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