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Introduction 
Lighting equipment or sound speaker systems are hanged from the ceiling in many dome structures 
or gymnasia. They are clamped with slender members like rods or cables. Recently such 
instruments tend to be bigger and heavier, and their fall may cause serious damage. Then it is 
important to clarify dynamic behavior of the above mentioned structures under cyclic loads like 
earthquakes. Two conditions of the tensile and the compressive may be repeated in slender 
members(called cables below). Generally cable members easily buckle under slight axial 
compression forces and this phenomenon is called the loosening. When tensile axial forces act on 
these cables which have loosen once, tensile stresses occur in cables as soon as being in tightening. 
It is said that such tensile stresses at this moment are like impact. But there are a number of 
unclarified points regarding the dynamic behavior of such structures in cyclic loads. The present 
report therefore aims at presenting basic data on designing these structures via the simplest model’s 
results which is calculated by the finite element method with consideration of the global 
geometrical nonlinearity and material nonlinearity to evaluate cable’s loosening.  
 
Analytical model and numerical method 
Fig.1 shows the analytical model considered in this paper. This model is one of the simplest for 
equipment hanging from ceiling and is a pendulum which consists of single mass node and two 
cable members. We calculate this model with the finite element method.  
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The assumptions on numerically modeling are followings. 
i) Cable’s mass density is ignored. Then one truss element for one cable is used. 
ii) Loosening behavior of cables under compression is evaluated with material nonlinearity. 

Namely cable’s material property is one way stress condition as Fig.2. 
iii) This system is considered as 2-dimensional problem. The total freedom is only two of horizontal 

displacement and vertical displacement. 
The aim to consider the above assumptions is to clarify the macroscopic and essential behavior of 
this structural system.  

The applied numerical method is based on the below concept. 
1) Geometrical nonlinearity is formulated with the updated Lagrangian formulation. The Green 

strain and 2nd Piola-Kirchhoff stress is taken account. 
2) The Newmark method with β=1/4 and γ=1/2 in Eq.(2) is applied to time integration scheme.  
  Motion equation; 
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 Applying Newmark method to this equation, 
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where M C K, , are mass matrix, damping matrix and stiffness matrix, R f f, ,ex in are unbalance 
force, external force and inner force vector, &&, &,u u u are acceleration, velocity, displacement vector 
respectively. 
The value of time increment is equal to Tk/70 in this paper. Tk is the eigen period for the 

longitudinal vibration mode of a cable, namely T ML
EAk = 2π , M; mass, A; cable’s section area. 

This time increment value becomes very small at the actual calculation. Furthermore The eigen 
period Tk means the highest eigen period for the present model. Generally speaking, the value of 
a time increment on applying the Newmark method is maybe about T1/20; T1 is the lowest eigen 
period since higher mode has no influence on the global behavior and is dissipated with damping 
effect. However, the longitudinal vibration mode has a great influence in the case of this 
structural system as described later. Thus such value is applied. Solving Eq.(2), Newton Raphson 
method is applied and the convergence is estimated by the ratio of the norm of unbalance force 
vector to the norm of inner force vector. The tolerance is equal to 10-12. 
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3) Rayleigh damping is applied.  
   ( ) ( )C M Kt t= +α α0 1                       (3) 

It is very difficult to predict the damping effect. Here, we assume that α0,α1 in Eq.(3) is determined 
using 2% at two specific frequency: (1) the lowest frequency(f’1) of the model in which loosening is 
not considered; (2) 1000 times f’1. 
Loading condition is as following. 
Step 1: The gravity acts on the mass node statically. 
Step 2:  The 1995 Hyougo-Nanbu (Kobe, Japan) earthquake wave (NS-component, Maximum 

acceleration:818cm/sec2) in Fig.3 is loaded as cyclic loads. This loading is inputted as 
constraint displacement at fixed ends of both cables, not at the mass node directly.  

It is the reason to input earthquake load from the fixed end side that the mass node may float since 
both cables loosen simultaneously. It is obvious that the acceleration of any earthquake do not act 
on the floating mass node. 

 
Numerical results for undamped model 
In this section, we describe the characteristics of the obtained results for a typical undamped model 
with M=1.0x10-5(tonf/cmsec-2), A=0.1(cm2), L=100(cm). The horizontal and vertical displacement 
time history is shown in Fig.4(a). Each value is normalized by the length of L. The maximum 
response of horizontal displacement is about 0.5 and vertical one is about 0.3. The period is about 2 
seconds and this value is different from the period as a three hinged structure, which is the model 
without loosening, but equal to the period Tp as a ‘Pendulum’ with length of L under the gravity, 

namely T
l
g

g cmp = =2 980 2π ; / sec . This matter means that one cable is always loosening.  
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Fig.4(a) Displacement Time History 



Fig.4(b),(c) Axial Stress Time History in a Left-side Cable 

 
But, these responses are not as simple as one of a ‘Pendulum’ after 10 seconds particularly. It is 
obvious that the higher vibration mode has an influence on this system.  
The axial stress response of a left-side cable is shown in Fig.4(b). Of course, one of a right-side 
cable is similar macroscopically. These are normalized by the stress value at the first step, when 
acts only the static gravity. In this figure, the notation of ‘Active’ or ‘Dead’ means that this cable 
should be in tightening or in loosening on the consideration of this model as a ‘Pendulum’. This 
figure leads to the followings: At first, the region of ‘Dead’, any stress does not respond. This 
matter means the cable’s loosening behavior is evaluated exactly, and it is quit natural. On the other 
hand, the response at the region of ‘Active’ is not smooth and seems to be discontinuous. Such a 
result can not be anticipated on physical grounds. Because the tensile axial stress in tension-side 
cable should be always constant if we assume that this system behaves as a ‘Pendulum’ after 
compression-side cable’s loosening. Then we enlarge the part surrounded by Box and show it in 
Fig.4(c). Such an enlargement unable us to understand the characteristics of the behavior of this 
system. Concretely speaking, the axial stress changes continuously during the very short term and 
the period of a axial stress is nearly equal to 0.015 second and this value corresponds to Tk, which is 
the eigen period for longitudinal vibration mode of cables. Then the tension-side cable may even 
become to be in loosening due to such a vibration mode. In fact, true ‘Dead’ zone exists in Fig.4(c).  
Furthermore, it is clear from Fig.4(d) too. This figure shows the motion of the mass node. The 
dotted lines is circular arc lines with the radius of L around each supported point. Considering this 
system as a ‘Pendulum’, the mass node has to move along the two dotted lines. However, in the 
present result, however the mass motion is complex. Obviously the mass node moves not only in 
the lateral direction but also in the longitudinal direction. Such a longitudinal vibration cause the 
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quite large axial stress as shown in Fig.4(b) like acting a impact load.  

 
Influence of two eigen period Tk and Tp in undamped model 
In the previous section, we clarified Tk and Tp have a great influence on this system. Thus, aim to 
examining the influence in detail, we calculated this structural system with various M, A and L, See 
Table 1 and 2).  

 
Table 1 List of Analytical Model      Table 2 List of Analytical Model 

- Tp is constant -           - Tk is constant - 

At first we explain the results in the case of Tp=constant=2.0sec. Fig.5(a) shows the maximum 
displacement response spectrum of the mass node in both the horizontal and vertical direction 
changing Tk. Similarly Fig.5(b) shows the maximum axial stress response spectrum. Though the 
maximum response spectrum of stress should correspond to one of displacement in the case of a 
linear problem, we can not confirm such correlation between this two figures. Namely the 
maximum displacement responses hardly change while the maximum stress response decreases 
considerably as increasing the value of Tk. These results mean that the global motion like a 
‘Pendulum’ depends on Tp and the maximum value of a stress does not become to be great 
whenever the global motion is large. Because it is the severe longitudinal vibration that causes the 
great value of stress as mentioned via the example in the previous section. Furthermore such 
vibration is considered to depend on Tk. 

From the facts described above, it is obvious that only Tp has an influence on the maximum 

Model A L M Tk Tp 
Name (cm2) (cm) (tonf/cmsec-2) (sec) (sec) 

A01L100M1 0.10  100.5  1.0×10-5 0.014 2.0  

A01L100M2 0.10  100.5  2.0×10-5 0.019 2.0  

A01L100M4 0.10  100.5  4.0×10-5 0.027 2.0  

A01L100M6 0.10  100.5  6.0×10-5 0.034 2.0  

A01L100M8 0.10  100.5  8.0×10-5 0.039 2.0  

A01L100M10 0.10  100.5  1.0×10-4 0.043 2.0  

A01L100M20 0.10  100.5  2.0×10-4 0.061 2.0  

 

Model A L M Tk Tp 
Name (cm2) (cm) (tonf/cmsec-2) (sec) (sec) 

A01L100M1 0.10 100.5 1.0×10-5 0.014 2.0  

A015L150M1 0.15 150.8 1.0×10-5 0.014 2.4  

A02L200M1 0.20 201.0 1.0×10-5 0.014 2.8  

A04L400M1 0.40 402.0 1.0×10-5 0.014 4.0  

A08L800M1 0.80 804.0 1.0×10-5 0.014 5.7  
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displacement response. However, we can not conclude that the maximum stress response depends 
only on Tk via these results directly. Thus, we examine the effect of Tk for the mechanical properties  

Fig.5(a) Maximum Displacement Response      Fig.5(b) Maximum Stress Response   

Fig.6(a) Maximum Displacement Response      Fig.6(b) Maximum Stress Response   

 

with the series of analytical model as shown in Table 2. These models have a constant(=0.014sec) 
of Tk and various value of Tp. The maximum displacement response spectrum is shown in Fig.6(a) 
and one of stress in Fig.6(b). In this case, the stress response decreases corresponding to the 
displacement response. 
The present results and the results shown in Figs.5 is reduced to the followings.  
(a)  The maximum displacement response depends on only the eigen period considering this 

structural system as a ‘Pendulum’. 
(b)  The maximum stress response depends on the above mentioned eigen period and the eigen 

period for the longitudinal vibration mode. 
It is an important problem how the two periods have an influence on the stress response. In this 
paper, we introduce the new parameter α to estimate the combination of these periods. 
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This parameter can be led by the consideration of the change of momentum at the cross point of two 
dashed lines in Fig.4(d). Function vmax is determined with the results in Fig.6(a) 
Fig.7 shows the relation between and the maximum stress response and the new parameter α. 
Generally the strongest correlation was observed between both although the plots in the graph are 
slightly scattered and they have a simple proportional relation. 
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It is clear from this figure that the stress response is evaluated with the present parameter 
macroscopically . 
Influence of damping effect 
In this section, we examine the damping effect on the behavior of this structural system. The results 
of the numerical example which has the same configuration as the model in Figs.4, is shown in 
Figs.8. Compared with the results without damping effect, it is clear from these figures that these 
results have the characteristics as follows.  
a)  The global motion of the vertical and horizontal displacement is as same as one of an 

undamped model. This reason is that the damping effect is evaluated by Eq.(3) and the eigen 
frequency for this vibration mode is too low for the damping effect to have an influence on this 
behavior. 

b) The time history of the stress is different from one of an undamped model. The maximum value 
of this model is smaller than one of an undamped model. Furthermore, at the ’Active’ region, the 
response with the high frequency is eliminated and then the stress changes smoothly due to the 

damping effect. 
Consequently, the difference between the undamped and damped model is caused with the 
influence of the damping effect on the vibration mode of the eigen period Tk.  
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Fig.8(a) Displacement Time History        Fig.8(b) Axial Stress Time History 

Fig.9(a) Maximum Displacement Response      Fig.9(b) Maximum Stress Response   

Fig.9(c) Maximum Displacement Response      Fig.9(d) Maximum Stress Response   

Similar to the undamped model, the maximum displacement response and stress response is shown 
in Figs. 9 when changing Tk and Tp. Generally the influence of each period Tk and Tp in the case of a 
damped model, is similar to one of an undamped model.  
Assuming the stress like an impact at the moment of tightening from loosening depends on the 
change of the momentum as described in the section of undamped model, parameter α should be 
effective in this case too. Fig.10 shows the relation between the maximum stress response and 
parameter a using the results in Figs.9. They have a simple proportional relation. And the 
correlation in this case is stronger than one of an undamped model though the slope of the line is 

different from each other due to the damping effect.  
Consequently our parameter is quite effective to predict the maximum stress response in the case 
with considering damping effect or not from these results.  

 

Conclusion 
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We clarified the mechanical properties of a ‘Pendulum’ structure in cyclic loads via numerical 
results. Particularly, the new parameter which consists of the period Tk and Tp is quite effective and 
useful to predict the maximum stress response. 
In our numerical method the global geometrical nonlinearity caused by large displacement of a 
mass node and the material nonlinearity to evaluate the loosening of cables are taken account. The 
consideration by such a numerical method is done in Ref.[1] to clarify the mechanical property of 
suspension bridge. The combination of the geometrical nonlinearity and the loosening may occur in 
other problems and may produce any serious damages. I guess that reports of this type research 
have apparently not been published to date. This type of research has just been started and is very 
important to clarify the true mechanical property of structures with any slender members 
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