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INTRODUCTION 
Engineering-based structures in contrast to architectural designed structures have been often aesthetically 
evaluated through interactive design/analysis on computers, e.g. Robbin 1996. Among engineers, “structural 
morphology” engineers are growing to interact multifarious researchers in order to create exotic geometric 
configurations, Wester 1994.  
Design of spatial models on the basis of morphological principles can be as tools for the generation and reading, 
implicating of spatial forms, even useful to design, education and research, Cattan and Reissig 1997. For 
examples, (1)architectural design of house plans has been studied on the basis of a growth model ; with the aid 
of cellular automaton (CA) and genetic algorithm (GA), Rosenman 1996. And (2)structural configuration and 
visualization has been carried out based on the developmental model ; with the aid of L-system and GA, 
Mutoh and Kato 1996. Also (3)attempt to implement the AI-related database for lightweight structures in views 
of the conceptual structural design aid applicable to both educational program and construction engineers and 
designers, Sedlak 1997.  
In this paper, which may be updated the previous study, the emphasis is put on the development of roof 
structure over a specific supporting element: tree-like branching columns. Previous study presented the 
applicability of ALife technique, Langton 1989, for spatial configuration to tree-like branching columns, and 
discussed that the drawing rules, which is converted from topological description in L-system‘ rules of 
rewriting strings, are necessary to visualize the geometric configuration. At least the outcome in visual or 
virtual objects seems to be like the physical “thread” models, Kolodziejczyk 1997. However, keeping the 
topological rules for biological background of natural plants/trees, the candidates for genes in GA associated 
with rewriting rules are restricted. Meanwhile only additional genes corresponding to geometric data: (1)length 
of branch, (2)angles of bifurcation from branch nodes and (3)contraction ratio of length over diameter as well 
as degree of recursions, or level of branching. Anyway, once the tree-like branching columns subjected to 
algorithm for canopy growth is created, the tips/apex or crown of each branches become a kind of supports to 
roofing frameworks.  
Roofing frameworks interact with furnishing materials and/or cladding systems. The lattice framework with 
cladding panels of metal or glass, membranes or else, Eekhout 1993, membranes with cable-net and concrete 
shell roofs are of particular examples, Robbin 1996. Thus the form of roof-coverage under the condition for 
supporting structure configuration which is determined by means of algorithmic generation in computers can 
be useful for engineers and designers. Because the process documentation stored in computers through 
algorithmic procedures is able to access by everyone relating to architectural, structural and constructional 
fields.  
L-SYSTEM : Overview 
L-system is one of legal algorithm for analysis of natural plants/trees‘ branchings and growth of cells in organs, 
described by Lindenmayer 1968. Often called “parallel dynamic” cellular automata(CA) or “parallel” rewriting 
rule grammar extended Chomsky’s formal language theory, L-system of the basic category is the deterministic 
zero-interaction L-system (D0L-system) which showed the topological form/description of the branching 
patterns of primitive filamentous organisms. The branching rules are though simple, able to represent 



(1)dichotomous and (2)monopodial branching patters; topology structures.  
The original D0L-system is defined as a triplet K=<G, w, P>, where G is a set of symbols, w is a starting 
symbol (axiom) and P is a set of production rules or rewriting rules. Followings illustrate how it describes 
branching patterns according to D0L-systems for (1) and (2) but additional notion for branches‘ bifurcation 
operators, brackets “[“ and “]”. Details can be found in Mutoh and Kato 1996.  
A tree production (rewriting) rules replaces an edge (inter-node) in a way of which the starting node of parent, 
trunk, is identified with offspring‘s base, branch node, and the ending node, tip, is identified with offspring’s 
top. Here the most simple but basic branching topology is illustrated: 
Monopodial branching: L-system definition Km=<Gm, wm, Pm> 
Gm={0,1,[,]},  wm=“0” with Pm={0  11[0]0, 1  1, [  [, ]  ]} 
Iteration sequence=0 to 2: 
0: 0 
1: 11[0]0 
2: 11[11[0]0]11[0]0 
 
Dichotomous branching: L-system definition Kd=<Gd, wd, Pd> 
Gd={0, 1, [, ]},  wd=“0” with Pd={0  11[0][0], 1  1, [  [, ]  ] } 
Iteration sequence=0 to 2 
0: 0 
1: 11[0][0] 
2: 11[11[0][0]][11[0][0]] 
 
in which arrow   is production operator, each intermediate level of rewriting strings, “0” and “1” mean the 
trunk and/or branch with uniform and homogeneous material and size with strings “[“ and “]” having arbitrary 
branch angle and direction.  
However if the “character” of each element branch is different in-between them, following rewriting is 
provided. Fig.1 shows the development growth of C.roseum(algae), Lindenmayer 1968, to 14th level of growth 
in case of its base of two cells denoted by D. Various type of cell development can be identified by the 
alphabets; from A to H. In this case, only the filamentous cell of the alphabet H can have one branch in 
monopodial pattern. Also as shown in Fig.2 of C.roseum, but by 15th level of growth with the numbers; from 1 
to 9. Here The main filamentous cell has its base three cells ; the number 2, without branchings. In this case, 
the cells with the number 9 can only bifurcate with each one branch like monopodial branching.  
DRAWING RULES : Interpretation of Strings as Geometric Object 
The L-system does not support drawing rules by itself. In order to give shapes (geometric description) to the 
generated strings, some rules for branching angles and orientations as well as diameter and length or each 
coordinates of growing tips is necessary. The following drawing rules are applied to visualize shapes of objects 
by interpreting a set of generated topological patterns.  
Regular Configuration Shape 
(1) Each number and/or alphabet of the generated string denotes a filamentous cell, branch which is described 
as a line segment or solid. A pair of brackets [ left and right ] in string identifies a branch node as well as 
specifies the direction of the branch, orientation of growing branch. 
(2)The first alphanumeric character is drawn straight upward. 
(3)Different alphanumeric characters have different or same cell lengths. 
(4)A left bracket specifies the beginning of the branch, base, and a right bracket is identified as its end, tip. 
(5)For the string  1[0]0[1] branches 0 and 1 are drawn on opposite sides of the plane. The left side is drawn 
first. Each branch has a constant or variable angle to the line segments 1 and 0. 
(6)For the string  1[0][0] branches 0 and 0 are drawn on opposite sides of the plane with a constant or variable 
angle of bifurcation.  
(7)Along the drawing rules, the geometric model for visualization is based on the homogeneous coordinate 
transformations; (a)Location/Position modified by translation, (b)Orientation/Direction modified by rotation 
and (c)Size/Length modified by scaling.  



Table 1 Process of Filament Branching with Alphabet  Table 2 Process of Filament Branching with Numbers 

 

 
    A                               Time 1 
 
    D     B                            Time 2 
       
 
     D     D     H     G      F     E     C           Time 7 
                   A 
 
 
 
                                C 
                             D 
                           D            A 
     D      D     H     H      H     H     G     F     E     C        Time 10       
                    D            D 
                      D            B 
                        E 
                          C    
                                 Continue to below 

 

 

                                   5 
                             6 
                            7          5 
                          8          6 
                        9    3      7          5 
           4     2    9           8          6 
                     2          2           2          4 
                   2          2           2           2 
      2     2     2     9    9     9     9     9     9     9    8     7     6    5        
                         2          2           2           3 
                          2          2            2      
                     3      9          7           5       
                              8          6 
                               7           5 
                                 6 

5 after 15 time steps  
                                 see Tab.2  

Fig. 2 L-system branching like CA 

Time Filament
1 1
2 23
3 224
4 2225
5 22265
6 222765
7 2228765
8 2229[3]8765
9 2229[24]9[3]8765
10 2229[225]9[24]9[3]8765
11 2229[2265]9[225]9[24]9[3]8765
12 2229[22765]9[2265]9[225]9[24]9[3]8765
13 2229[228765]9[22765]9[2265]9[225]9[24]9[3]8765
14 2229[229[3]8765]9[228765]9[22765]9[2265]9[225]9[24]9[3]8765
15 2229[229[24]9[3]8765][229[3]8765]9[228765]9[22765]9[2265]9[225]9[24]9[3]8765

TimeFilament
1 A
2 DB
3 DDC
4 DDEC
5 DDFEC
6 DDGFEC
7 DDH[A]GFEC
8 DDH[DB]H[A]GFEC
9 DDH[DDC]H[DB]H[A]GFEC
10 DDH[DDEC]H[DDC]H[DB]H[A]GFEC
11 DDH[DDFEC]H[DDEC]H[DDC]H[DB]H[A]GFEC
12 DDH[DDGFEC]H[DDFEC]H[DDEC]H[DDC]H[DB]H[A]GFEC
13 DDH[DDH[A]GFEC]H[DDGFEC]H[DDFEC]H[DDEC]H[DDC]H[DB]H[A]GFEC
14 DDH[DDH[DB]H[A]GFEC]H[DDH[A]GFEC]H[DDGFEC]H[DDFEC]H[DDEC]H[DDC]H[DB]H[A]GFEC



 
 
 

 
Examples of monopodial and dichotomous branchings for visualization on the basis of  the algorithm above 
are depicted as in Fig.3, with bifurcation angle of constant 45degrees at the level 6 of growth. Here in a 2D 
following algorithm for drawing is employed with the arrow for substitution operator:  
1: A   A*T(aI);   I=I+1 
0: A   A*T(aI);   I=I+1 
[: A   A*R(-γ)  if odd(I) 
[: A   A*R(+γ)  if even(I) 
then stack(I):  store its state of tip 
]:     pop(I):  update location of tip      
 then A   A(I); and repeat.                                                            (1)    
in which A means the state of position of tip, aI =<x,y,1>, and ranslation matrix T and rotation matrix R are 
given below.  
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Alternative can be found in usual geometric model for a 3D visualization which determine directly the 
geometry of object reprented its tip position (xi,yi,zi) from base position(xB,yB,zB) , Aono and Kunii 1984:  
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where u=xB-xA, v=yB-yA and w=zB-zA with A of base of parent and B of tip of parent; S=1/(u*u+v*v) 1/2 and 

L=(u*u+v*v+w*w)1/2  of length in-between base and tip, and R i  means a contraction ratio. So if γ I and γ I +1  

are almost equal to zero, the branching pattern tends to monopodial branches.  
Original position P=<Px, Py, Pz> is moved by translation of a vector T=<Tx, Ty, Tz>. Then rotation of angle 
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Fig. 1 L-system branching like CA 
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Fig. 3 Drawing rule(example) 



about each axis operates the translated position P‘ by R=<Rx, Ry, Rz>. Finally, to scale dimensions in each 
coordinate direction scaling by a factor S=<Sx, Sy, Sz>.  However with these coordinates, each point P is 
defined as P=<Px, Py, Pz, 1> in a 4D space. Namely, each point <x, y, z, w> in the 4D space represents the 
point <x/w, y/w, z/w> in the 3D space. Here the primitive transformations above may be described by 4x4 
matrices, Thalmann and Thalmann 1987.  
For the examples of roofing frameworks under the constrains of regular tree-like branching support structures, 
Figs. 4 and 5 are depicted. Fig. 4 shows the roof like arcade over square plan-form of 4 trees. Fig. 5 shows the 
braced barrel vault with square mesh pattern over the trees arranged serial lines. Both the framing members of 
roofs are connected to the node of tips of canopy growth.  

 
             
 
                                                           

 
 

 
 
Irregular Configuration Shape 
Keeping the rewriting rules constant or two type of branching topology, the drawing rules are variable: the 
attribute or geometric parameters assumed as each gene of chromosome for geometric objects, or phenotype. 
As shown in Fig. 6, one of chromosome consists of eight genes. Each gene corresponds to both the entities and 
values assigned, as listed in Tab. 3. In particular, the number 1 of genes which has entities of type of 
branchings: 1(dichotomous branching) and /or 2(monopodial branching), calls the rewriting rules and 
generates strings of alphanumeric characters depending on the number 8 of gene; number of branchings. Then 
the branch growing according to rewriting rules refers to the values in table randomly, or the data-set as gene 
pool which is generated randomly in the combination of values for each entities.  

Fig.6  Schematic Chromosome  
Table 3 Definition of gene parameters  

In this case, it is assumed that the genetic operator, cross-over and mutation without fitness evaluations: 
(a)Each of six phenotype reproduced from selected chromosome.  
(b)According to the probability of 1/6, 1 out of 6 selected objects is deleted.   
(c)The object related to some chromosome again is selected randomly, then two particular phenotypes are 
determined by means of artificial selection, or aesthetically.  
(d)Two phenotype out of 6 generated may be crossed over each other by three times as well as change of 
number of branchings with the probability of 1/5.  

 

 

No. of 
Gene

1 Type of Branchings 1(dichotomous),2(monopodial)
2 Scale 1.1,1.2,1.3,1.4
3 Angle of branch 20,30,40,50,60,70(degs)
4 Length deviation/right 0.8,0.9,1.0,1.1
5 Length deviation/left 0.9,1.0,1.1
6 Angle deviation/right 0.7,1.0,1.3(degs)
7 Angle deviation/left 0.5,1.0,1.5(degs)
8 No.of branches 5,6,7,8,9

Entities Values assinged

Chromosome Gene1 Gene2 Gene3 Gene4 Gene5 Gene6 Gene7 Gene8
   ↑　← call

Rewritig Rules

Fig.4 Arcade over trees Fig. 5 Braced barrel vault 



(e)Mutation as the trial for some amount deviation of angles ranged from +10 to –10degs., +30 to –30degs 
and/or +50degs, furthermore is applied to the phenotype much in irregular object, according to the probability 
of 1/5.  
 
According to the procedure mentioned above, the evolution of irregularities from regular configuration of 
tree-like branching objects is illustrated as shown in Figs. 7,8,9,10,11,12,13 and 14. In each display,left to right 
in order,1to3 at top,4 to 6 at bottom mean the phenotype. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 6phenotypes(intial state) Fig.8 5th to be reproduced but 6th deleted 

Fig.9 Reproduction by cross-over(example) Fig.10 Selection for cross-over operation 

Fig.11 No development despite cross-overed Fig.12 Multation of 2nd phenotype(example) 

Fig 13 Selection of phenotype after mutation Fig 14 One of complex forms



 
 
 
 
 
 
 
FITNESS EVALUATION : Attempt to relate the Results form Static Analysis and Growth Parameters 
From the viewpoint of the relationship between the branching structure and the mechanical behavior of a tree 
(natural trees), the parameters of diameter, self-weight, bending moment at each branching node, branch length 
and angle of branch were observed by several researchers, e.g. Thompson 1917 and Murray 1927. Then the 
hypothesis that the optimal/adaptable tree structures agree the minimum energy loss was examined.  
The total energy loss is the sum of the energy required for the construction which is proportional to the tree 
volume of the branches and the energy consumption for supporting the self-weight of the branches, leaves and 
buds which is equal to the elastic strain energy. The outcome from comparison between observations and 
hypothesis, the maximum bending stress at each node of branching is constant. In so-far as this observations 
may be confirmed, it is evident that (1) the relationship between the diameter (periphery length) D and bending 
moment M acting on the branch is, M proportional to D3, (2)the relation between the self-weight W of all the 
parts of the natural tree peripheral to some branching node and D is, W proportional to D2.5 and (3)the relation 
between the branch length L and d is, L2 proportional to d. Namely, the length to diameter ratio, L/D times L is 
constant. Resutls for a specific regular configuration are illustrated as shown in Fig. 14.Solid line means 
D=0.0245*L2 which corresponded to a certain natural tree‘s branching pattern. 

 
Fig. 15 Diameter and length relationship (regular configuration) 

The illustration for the compatibility of growing branch size to the adaptive proportion of natural trees is 
investigated through the static analysis: elastic linear analysis for the tree-like branching columns. As 
summarized in Tab.4, the member of branching trees is 2 meter length of trunk(stem) with section sizes 
according to the number of branchings.  The member of pipe section steel material with rigid joint connection 
at each node under 20kN/m2 of tributary area for tips of canopy. The member slenderness is ranged from about 
6 to 30, then the member buckling is not considered. The analytical models for (1)dichotomous and 
(2)monopodial branching of regular configurations are first assumed as metioned before. However the 
constituent member sections are either uniform despite different number of growth level or variable dependent 
to growth level as listed in Tab.4. Also the tree-branching supports with or without roof frames are examined. 
The results for bending moment distribution and displacements are shown as in Fig. 17 and 18. The ratio, D/L, 
for the results with observed relation inserted is depicted as shown in Fig. 15. 
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Next for irregular configuration as shown in Figs. 19 and 20, the 
moment, axial force and displacement distributions are 
illustrated. Here assumed chromosome as in Fig. 6 consites of 
genes for geometric parameters defined as listed in Tab.3.  
Also the ratio, D/L, for the results is summarized as shown in 
Fig. 16. The inserted curves are of empirical equation due to a 
kind of adaptability to constant moment at each node of 
branches as mentioned before.  
If the growth of tree-like supports tends to be in the ratio for 
natural trees‘ branching growth which may be optimal then 
artificial branching operation due to GA is more adaptable in 
practice. However all the members are different each other as 
well as connected with different angles. Also, each phenotype generated by GA operation is measured its 
fitness due to the ratio of D/L for natural trees. Examples for roof framing system based on both regular and 

irregular branching supports are illustrated. 
Fig. 16 Diameter and length relationships for irregular variant configurations(dichotomous branches) 
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No. Diameter  *  Thickness
1 318.5 * 6.9(mm)
2 190.7  *  5.3(mm)
3 139.8  *  4.0(mm)
4  89.1  *  3.2(mm)
5  60.5  *  2.3(mm)

Note: branch No.5 as Tip jointed 
 to roof frames, branch No.1 as 
 trunk branch. In case of same 
 branch members by No.1.

Table 4 Member Sizes

(a)Momentdistribution(Mmax=66kNm)m (b)Momentdistribution(Mmax=3.5kNm)

Fig.17 Dichotomous branchings with / without roof frames 



       
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

                                          
 
 
 
 
 
 
 
 
 
 
 

 

 

 
                                                                   

 

(a)Mmax=85kNm (b)Mmax=19.9kNm 
Fig.18 Monopodial branching with / without roof frames 

Mmax=83.8kNm 

Max.vertical displacement=100m 

Max.axial force=188kN 

Fig.19 Irregular configuration with roof frames

Max.vertical displacement=6mm 

Max axial force=94.3kN 

Fig.20 Arcade with Duplication of left figure 

Mmax=24.4kNm 



 
 
For roof framing system which is defined due to a canopy of branching tree-like supports, Fig21 means barrel 
grid vault over regular form. In Fig.22 position of tree trunks is arranged arbitray in fan-like form. The further 
study into such an arrangement rules can be developed by means of cellular automaton(CA) in conjuction with 
GA applied to L-system‘s rewriting rules directly. 
 
References    
Aono, M and Kunii, T. L.(1984) “Botanical Tree Image Generation”, IEEE CG &A, 4(5), 10-34. 
Cattan, A. and Ressig, P.(1997) “Design of Spatial Models of Visual and Manual Operation based on  
Morphological Principles, Structural Morphology  Towards the New Milleniuum, University of  
Nottingham, 367-374. 
Dawkins, R.(1984)“The evolution of Evolvability”, in Langton, C. G., Addison-Wesley, 201-220. 
Eekhout, M.(1993)“Advanced Glass Space Structures”, Space Structures 4, Vol.2, 2016-2024. 
Goldberg, D. E.(1989) Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley. 
Langton, C.G.(1989) Artificial Life, Addison-Wesley. 
Kolodziejczyk, M.(1997)“Certain Aspects of the Experimental Work with the Thread Model relating to  
Perception,  ibid, University of Nottingham, 275-285. 
Lindenmayer, A.(1968)“Mathematical Models for Cellular Interaction in Development Part I and II”, Journal  
of Theoretical Biology, vol.18, 280-315. 
Murray, C.D.(1927)“A Relationship between  Circumference and Weight in Trees and its Bearing on Branch  
Angles“, Journal of General Physiology, Vol.10, 725-729. 
Mutoh, I. and Kato, S.(1996)“Structural Morphogenesis by a Concept of ALIFE”, Proc. of Conceptual Design  
of Structures, University of Stuttgart, Vol.1, 323-330. 
Robbin, T.(1996) Engineering a New Architecture, Yale University Press, London, 138pp. 
Rosenman, M.A.(1996)“A Growth Model for Form Generation using a Hierarchical Evolutionary Approach,  
Microcomputers in Civil Engineering, vol.11, 163-174. 
Sedlak, V.(1997) “A Computer-Aided Conceptual Structural Design Aid, Proc. of IASS Int. Symp.‘97 on Shell  
and Spatial Structures, Singapore, 745-754. 
Thalmann, N.M. and Thalmann, D.(1987) Image Synthesis Theory and Practice, Springer-Verlag, Tokyo. 
Thompson, D.W.(1917) On Growth and Form, Cambridge University Press, Cambridge, UK 

Fig.21 Regular braced barrel vault Fig.22 Irregular curved roofing 


