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SUMMARY 

The purpose of this paper is to estimate the elasto-plastic buckling load of rigidly jointed 
single-layer latticed domes under uniform load. The value of λs is adopted as a slenderness 
ratio of a dome. To examine the fundamental elasto-plastic buckling behaviour of the dome 
without geometrical initial imperfections, the elasto-plastic analysis is carried out. Next, the 
buckling behaviour of the domes with geometrical initial imperfections is examined. As a 
result, the elasto-plastic buckling load of the domes is estimated by using Modified 
Dunkerley Formulation as a function of λs. 

 
1. INTRODUCTION  

The single-layer latticed dome is a framed structure, and shows a similar behaviour with 
continuous shells. It is made clear by experimental results1) that the material nonlinearity 
influences the buckling load of the single-layer latticed dome. In recent years, the elasto-
plastic buckling analysis is carried out with the progress of nonlinear analysis method.  

The purpose of this paper is to estimate the elasto-plastic buckling behaviour of rigidly 
jointed single-layer latticed domes under uniform load. To begin with, the linear buckling 
analysis, the elastic buckling analysis and the elasto-plastic buckling analysis are carried 
out for domes without geometrical initial imperfections. The elasto-plastic buckling 
behaviour of rigidly jointed single-layer latticed dome is made clear by comparing these 
results. Next, we discuss the effect of a geometrical initial imperfection on the buckling 
load reduction  

As a result, the elasto-plastic buckling load of the dome is estimated by using Modified 
Dunkerley Formulation as a function of λs2). 

 
2. ELASTO-PLASTIC BUCKLING BEHAVIOR OF RIGIDLY JOINTED SINGLE-

LAYER LATTICED DOMES WITHOUT GEOMETRICAL INITIAL 
IMPERFECTIONS 
 

2.1 Method of Analysis  
Figure 1 shows the geometry of rigidly jointed single-layer latticed dome. For the 

boundary condition, the nodes of the outer ring are pin supported. The uniform load is 
applied vertically at each of free joints. Dimensions of domes are shown in Table 1, and the 
member properties of the tubular section are shown in Table 2. Young’s modulus 
E=2.06Å~105 MPa, the yield stress σy=235.4 or 294.2 MPa and modulus of strain 
hardening Et=E / 100. The stress-strain relationship is assumed to be bi-linear. 

Three methods of analysis are used here to determine the buckling load.  These methods 
are the linear eigenvalue analysis, the elastic buckling analysis and the elasto-plastic 
buckling analysis. Taking advantage of symmetry, a half of the dome is analyzed.  

 
2.2 Slenderness ratio of a dome 



The value of λs(Eq.(1)) is adopted as a slenderness ratio of a dome.  

 
where σcl is the classical buckling stress of a spherical shell, Poisson’s ratio υ =0.3 and 

the effective shell thickness . The values of  λs are shown in Table 3. 
 

2.3 The elasto-plastic buckling behaviour of rigidly jointed single-layer latticed domes 
without geometrical initial imperfections 

 The load-displacement relationships of the domes are shown in Figure 3. The load P is 
normalized by the elastic buckling load Pcr

el
(p), the displacement D is normalized by the 

displacement Dcr
el

(p) at the elastic buckling load. The open triangle Å§ gives the member 
initial yield load Py

pl
(p), and the closed triangle Å•gives the buckling load. For the dome 

with λs=0.63, the ratio of the elasto-plastic buckling load to the elastic buckling load(Pcr
pl

(p) 
/ Pcr

el
(p)) is 0.64, and the elasto-plastic buckling load is 1.23 times larger than the member 

initial yield load. On the other hand, for the dome with λs=0.97, the ratio of  the elasto-
plastic buckling load to the elastic buckling load approaches unity, and Pcr

pl
(p)/Py

pl
(p)=1.02.  

Figure 4 shows the collapse mechanism. The thick solid line gives the yield members. 
For the dome with λs=0.63, central members yield at first. And yield member gradually 
propagates over all. Finally, all members except for the first and second ring become yield. 
For the dome with λs=0.80, members will yield in the same way of the dome with λs=0.63, 
but central members do not yield. For the dome with λs=0.97, corner members yield at 
first, and second ring yield. This behaviour is different from the other models. 

The deformations at the elasto-plastic buckling load are shown in Figure 5. The dome 
with λs=0.63 is collapsed by general buckling. On the other hand, the dome with λs=0.97 is 
collapsed by node buckling.                                                

The relation between equivalent buckling wave length leq and 3) is shown in 
Figure 6. This ξ is the geometrical parameter that represents the shell-likeness of the dome. 
The leq is normalized by member length l. Figure 6(a) shows the results obtained by linear 
buckling analysis, and leq in this figure is calculated by Eq.(2) and (3). On the other hand, 
Figure 6(b) shows the results obtained by the elasto-plastic buckling analysis, and leq in 
this figure is calculated by Eq.(2). Here, Ncr(p) in Eq.(2) is a maximum axial member force 
at the elasto-plastic buckling load.   

 
 

here, Ni(p) is a maximum axial member force under unit uniform load and Pcr
lin

(p) is the 
linear buckling load.  

For the linear buckling analysis, the buckling wave length depends on ξ, and  all of the 
domes with ξ<5 become leq

lin
(p)/ l <1.0. This means that these domes are collapsed by 

member buckling. For the elasto-plastic analysis, the buckling wave length depends on  λ 
rather than ξ. Namely, the buckling wave length is determined by λ. Moreover, the 
buckling wave length is longer than that of the linear buckling analysis. 



Compared with the elastic buckling behavior, some characteristics of the elasto-plastic 
buckling behaviour are shown as follows: As the dome which the value of λs is small, the 
elasto-plastic buckling load is smaller than the elastic buckling load, because a lot of 
members yield. These domes are collapsed by general buckling. As the value of λs 
increases, number of yield member decrease and the ratio of the elasto-plastic buckling load 
to the elastic buckling load approaches unity. These domes are collapsed by node buckling. 

 
2.4 The estimation of elasto-plastic buckling load of the rigidly jointed single-layer latticed 

domes without geometrical initial imperfections 
We express the elasto-plastic buckling load in terms of generalized slenderness ratio 

Λ3) (See Figure 7). The generalized slenderness ratio Λ is defined as a square root of the 
quantity obtained through dividing Ny(=σy•A) by the linear buckling axial force Ncr

lin
(p). 

The results are estimated by Modified Dunkerley Formulation4). In other words, the elasto-
plastic buckling load of rigidly jointed single-layer latticed dome is estimated  by member 
axial force. 

Next, we express the elasto-plastic buckling load in terms of member yield load Py using 
the value of λs (See Figure 8). Here, Py is calculated by ; 

   Py = 6σ y⋅A⋅θ  
The results almost coincide with Modified Dunkerley Formulation expressed in Eq.(5). 

 
here, knock-down factor γ=1.0. 
The elasto-plastic buckling load is estimated by both estimations. 
 

3. The buckling behavior of rigidly jointed single-layer latticed domes with 
geometrical initial imperfections 
 

3.1 Method of analysis and assumption of geometrical initial imperfection 
The analytical model and the method of analysis are the same ways as foregoing chapter. 

In this chapter, the buckling load reduction influenced by geometrical initial imperfections 
is discussed. The geometrical initial imperfections are assumed as follows. 
(i)  a maximum amplitude node of the first mode obtained from linear eigenvalue analysis 
(ii)  a maximum displacement node at the elasto-plastic buckling load without geometrical 

initial imperfections 
(iii)  similar shape of the first mode obtained from linear eigenvalue analysis 
(iv)  similar shape of deformation at the elasto-plastic buckling load of the dome without 

geometrical initial imperfection 
 In each case, the maximum amplitude of the imperfection is assumed to be 0.2te. The 

initial imperfection is given only in the vertical direction at each node. 
The examples of geometrical initial imperfection rules ( i ) and ( iii ) are shown in Figure 

9. Table 4 shows the node number that geometrical initial imperfection is assumed by rules 
(i) and (ii). 

Figure 10 shows the ratio of the elasto-plastic buckling load of the dome with 
geometrical initial imperfection Pcr

pl
(i) to the elasto-plastic buckling load of the dome 

without geometrical initial imperfection Pcr
pl

(p). Figure 10( i ) shows the Pcr
pl

(i) / Pcr
pl

(p) in the 



case of the dome with geometrical initial imperfection ( i ). Here, taking note of the results 
of θ=3Åã, this ratio becomes large as the value of λs increases. This reason is shown in the 
follows. The magnitude of node imperfection is defined by the effective shell thickness. 
Thus, as the value of λ increases, namely, as the value of λs increases, these domes have 
small imperfection at the apex of the dome. Figure 10( ii ) shows the Pcr

pl
(i) / Pcr

pl
(p)  in the 

case of the dome with geometrical initial imperfection ( ii ). The domes that λs is large have 
the imperfection at the corner node of the dome. For this reason, as the value of λs 
increases, Pcr

pl
(i) / Pcr

pl
(p) becomes small. Figure 10( iii ) shows the Pcr

pl
(i) / Pcr

pl
(p)  in the case 

of the dome with geometrical initial imperfection ( iii ).   As the  value of  λs increases, 
Pcr

pl
(i) / Pcr

pl
(p) becomes small. Especially, the buckling reduction of two domes is large. 

Figure 10( iv ) shows the Pcr
pl

(i) / Pcr
pl

(p)  in the case of the dome with geometrical initial 
imperfection ( iv ). For the dome with λsÅÖ0.80, Pcr

pl
(i) / Pcr

pl
(p) Å‡0.85. However, for the 

dome with λs>0.80, as the value of  λs increases, Pcr
pl

(i) / Pcr
pl

(p) becomes small. 
Next, we discuss the buckling behaviour of each dome. The collapse mechanism at the 

elasto-plastic buckling load of the dome with λs=0.80 with imperfection ( i ) is shown in 
Figure 11(a). Since this dome has the imperfection at the apex, only members connected to 
the apex yield. The collapse mechanism at the elasto-plastic buckling load of the dome with 
λs=0.97 with imperfection ( ii ) is shown in Figure 11(b). Since this dome has the 
imperfection at the node of the corner, the stress concentrated member of the dome yield at 
first. Therefore the elasto-plastic buckling load of the dome with imperfection is smaller 
than that of the dome without imperfection. 

To examined the elasto-plastic buckling behaviour of the dome with imperfection (iii), 
the equivalent buckling wave length ratio leq

pl
(p) / leq

lin
(p) is shown in Figure 12. As the value 

of  λs increases, leq
pl

(p) / leq
lin

(p) approaches unity. In other words, imperfection wave length is 
equal to elasto-plastic buckling wave length of the dome without imperfection. For this 
reason,  Pcr

pl
(i)/Pcr

pl
(p) is considered to be small. 

In the case of the dome with geometrical initial imperfection ( iv ), imperfection wave 
length is equal to elasto-plastic buckling wave length of the dome without imperfection. 
The ratio Pcr

pl
(i)/Pcr

pl
(p) is not very small. However, for the domes with λs=0.97, Pcr

pl
(i)/Pcr

pl
(p) 

is small. This is the same behaviour as that of the dome with imperfections.  
Compared with the elasto-plastic buckling behaviour of the dome without geometrical 

initial imperfections, some characteristics of the elasto-plastic buckling behaviour with the 
geometrical initial imperfection are presented as follows: For the ideal domes with λs<0.80,  
the elasto-plastic buckling mode is different from the elastic buckling mode. Therefore, the 
elasto-plastic buckling load that the dome has the imperfection at the maximum 
displacement node decreases suddenly. For the domes with 0.80 < λs < 1.0, the domes are 
collapsed by node buckling. The elasto-plastic buckling load of these domes is greatly 
influenced by imperfections. 

 
 

3.2 The estimation of the elasto-plastic buckling load of the dome with geometrical initial 
imperfection 

The elasto-plastic buckling load of the dome with geometrical initial imperfection is 
estimated by the same way of the elasto-plastic buckling load of the dome without 



geometrical initial imperfection.  
The results are shown in Figures 13 and 14. In the estimation of Λ, the elasto-plastic 

buckling load of the dome with geometrical initial imperfections is estimated by Modified 
Dunkerley Formulation with knock-down factor γ=0.43; γ=0.43 is shown in 
recommendation of  IASS5). On the other hand, in the estimation of λs, the results almost 
coincide Modified Dunkerley Formulation with knock-down factor γ= 0.35. In the former, 
the generalized slenderness ratio Λ and the maximum axial force member are determined 
by the result of the linear buckling analysis for the dome with imperfections. Therefore the 
elasto-plastic buckling load is estimated in spite of the shape of the geometrical initial 
imperfection. In the later, Py is calculated by the member connected to the apex of the 
dome, and λs is calculated by the dome without geometrical initial imperfections. 
Therefore, in this case the knock-down factor γ is smaller than 0.43. 

 
4. CONCLUSION 

In this study, the behaviour of the rigidly jointed single-layer latticed dome is examined 
by numerical analysis. Summaries of the results obtained may be as follows.  
( 1 )The elasto-plastic buckling behaviour of the rigidly jointed single-layer latticed dome is 

estimated by the slenderness ratio of the dome λs.  
( 2 )For the domes without geometrical initial imperfections, for the domes with λs < 0.80,  

the elasto-plastic buckling load is smaller than the elastic buckling load. And these 
domes are collapsed by general buckling. For the domes with 0.80 < λs < 1.0, the 
domes are collapsed by node buckling. 

( 3 )For the domes with geometrical initial imperfections, as the value of λs increases, the 
elasto-plastic buckling load decreases. Especially, the elasto-plastic buckling load of 
the dome which is collapsed by node buckling is greatly influenced by geometrical 
initial imperfections. 

( 4 )The elasto-plastic buckling load is estimated by using Modified Dunkerley Formulation 
as the function of λs as well as the function of Λ. 
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