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ABSTRACT 
 
Flexural-torsional buckling and postbuckling of beams can be analysed using finite element 
methods. In formulating a finite beam element, a rotation matrix is used to obtain strain-
displacement relationships. Because of couplings between displacements and twist rotations, 
components of the rotation matrix are lengthy and complicated. To facilitate the formulation, 
approximations are usually used to simplify the rotation matrix. A simplified small rotation 
matrix is often used in the buckling analysis and a simplified second order rotation matrix is  
used for nonlinear postbuckling analysis. However, the small rotation and second order 
rotation matrices do not describe rotations  accurately and introduce some approximations to 
the couplings between displacements and rotations. These approximations  may affect results 
of buckling and postbuckling analysis. In the inelastic buckling and postbuckling analysis, 
numerical integration over the cross-section is usually used to check the yield criterion and to 
calculate the stress resultants and elastic-plastic stress-strain matrix. An integration scheme 
that is not consistent with stress distributions may lead to incorrect inelastic buckling and 
postbuckling results. 
 
This paper investigates effects of these approximations on buckling and postbuckling analysis 
of beams. It is shown  that  a finite element model based on the small rotation matrix predicts 
incorrect buckling loads.  A finite element model based on the second order rotation matrix 
may lead to over-estimations of inelastic buckling loads and poor predictions of the 
postbuckling  behaviour. An integration scheme over the cross-section that is not consistent 
with stress distributions does not predict correct inelastic buckling and postbuckling 
behaviour. 
 
INTRODUCTION 
 
Flexural-torsional buckling and postbuckling of beams have been studied for decades by a 
number of researchers. Finite element methods can be used to analyse flexural-torsional 
buckling and postbuckling of beams. In formulating a finite beam element, a rotation matrix 
is used to obtain strain-displacement relationships. Because of  couplings between 
displacements and twist rotations, components of the rotation matrix are lengthy and 
complicated. To facilitate the formulation, approximations are usually used to simplify the 
rotation matrix. A simplified small rotation matrix is often used for the buckling analysis by a 
number of researchers because the rotations are small at buckling. A simplified second order 
rotation matrix is used for the buckling and  postbuckling analysis because the second order 
rotation matrix  is considered to have  sufficient  accuracy. However, neither the  small  
rotation nor the second order rotation matrix describes rotations accurately because some 
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approximations to the couplings between displacements and rotations are introduced. These 
approximations may affect results of buckling and postbuckling analysis as pointed by Simo 
and Vu-Quoc (1987)  and Pi and Trahair (1994).  
 
In the inelastic analysis, to check the yield criterion and to calculate the stress resultants and 
elastic-plastic stress-strain matrix, numerical integration over the cross-section is usually 
used. The accuracy of the integration is related not only to the integration technique, but also 
to the arrangement scheme of the integration points. If  the scheme is not consistent with the 
stress distributions, very accurate integration technique may produce incorrect results. 
 
This paper investigates the effects of approximations in the rotation matrix and in the 
integration scheme on the buckling and postbuckling analysis of beams. 
 
SOME BASIC CONCEPTS 
 
Basic Assumptions and Rotation Matrix 
 
Basic assumptions are: (1) strains are small; (2)  Euler-Bernoulli bending theory and Vlasov’s 
torsion theory are used; (3) beams are of doubly symmetric I-section. 
 
Two axis systems are used to describe the motion of a thin-walled member. The first axis 
system OXYZ  is fixed in space as shown in Fig. 1. The second axis system oxyz  is attached to 
the beam. Before deformation, the origin o  is at the centroid of the cross-section at  
coordinates (0 0, , z ) in the axis system OXYZ . The axis oz coincides with the axis OZ  and 
the axes ox and oy  coincide with the principal axes of the cross-section before deformation.  
Basis vectors of the system oxyz  are 

r r r
p p px y z, . After deformation, the centroid o  displaces 

u v w, ,  in the directions  OX ,  OY , OZ  to point o*  and at the same time the cross-section 
rotates through an angle φ , so that the beam-attached axis system moves to o x y z* * * * . The 
axis o z* * is in the tangential direction of the deformed centroidal axis. The axes o x* *  and 
o y* * coincide with the principal axes of the cross-section of the deformed member. Basis 
vectors of the system o x y z* * * *  are r r r

q q qx y z, , . 
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Fig. 1 Deformations of a thin-walled beam 

 
The rotation from vectors r r r

p p px y z,   to vectors r r r
q q qx y z, ,  can be described by an orthogonal  

rotation matrix [ ]R  as 
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The components of the rotation matrix  are obtained by Pi and Trahair (1994) as 
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A second order theory neglects the third and higher order terms and is often used in the 
buckling and postbuckling analyses because it is considered to have sufficient accuracy. The 
components of the second order rotation matrix are 
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A small rotation theory neglects the second and higher order terms and is  used for the 
buckling analysis by a number of researchers because the twist rotation is small during 
buckling. The components of the small rotation matrix are  

[ ]R
u
v

u v
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Strains 
 
The longitudinal normal strain of a point  ( )P x y,  can be obtained as 

( ) ( ) ( ) ( )ε ωφ φP w u v x u C v S y u S v C x y= + + − + + − − + +' ' ' " '' '' '' '' '1
2

1
2

2 2 2 2 2

   (5) 

based on the large rotation matrix (2) where C = cosφ  and S = sinφ , 

( ) ( ) ( ) ( )ε φ φ ωφ φP w u v x u v y u v x y= + + − + + − − + +' ' ' '' '' '' '' '' '1
2

1
2

2 2 2 2 2

    (6) 

based on the second order rotation matrix (3), or 

( ) ( ) ( ) ( )ε φ φ ωφ φP w u v x u v y u v x y= + + − − − + − + +' ' ' '' ' ' ' ' '' '' '1
2

1
2

2 2 2 2 2

    (7) 

based on the small rotation matrix (4). 
 
The uniform torsion shear strain of a point P  is given by (Vlasov 1961) 
γ φP Pt= −2 '                       (8) 
where t P  = the distance of the point P   from the mid-thickness surface. 
 
Material Plasticity 
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The onset of yielding is assumed to be governed by the Mises criterion. For a thin-walled 
member, the Mises yield criterion can be simplified as 
σ σe y− = 0  and  σ σ τe P P= +2 23       (9) 
where σ y  =  uniaxial yield stress, σe  = effective stress, and σP  and τ P  = the longitudinal 
normal stress and uniform torsion shear stress, respectively. 
 
Stress increments can be related with strain increments by 
{ } [ ] { }Δ Δ Δ Δσ τ ε γP P

T ep
P P

T
E, =                   (10) 

where [ ]E ep = the elastic-plastic stress-strain matrix given by  

[ ]E
E

G
E EG

EG G
ep P P P

P P P

=
⎡
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⎤

⎦⎥
−

⎡

⎣
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⎤

⎦
⎥

0
0

1 3
3 9

2 2

2 2α
σ σ τ

σ τ τ
 and α σ σ τ= + +e P PH E G2 2 29'        (11) 

where H '  = strain hardening parameter. 
 
EFFECTS OF APPROXIMATIONS ON FLEXURAL-TORSIONAL BUCKLING 
ANALYSIS 
 
Energy Equation for Flexural-Torsional Buckling 
 
Energy equation for flexural-torsional buckling of a beam can be derived from the second  
variation of its total potential. 
 
The energy equation based on the second order rotation matrix can be obtained on the basis 
of strains (6) and (8) 

( )1
2

2 02 2 2

0
EI u GJ EI M u dzy b b w b x b b

L '' ' '' ''+ + + =∫ φ φ φ                 (12) 

 
The energy equation based on the small rotation matrix can be obtained on the basis of strains 
(7) and (8)  

( )1
2

2 02 2 2

0
EI u GJ EI M u dzy b b w b x b b

L '' ' '' ' '+ + − =∫ φ φ φ                 (13) 

 
Comparison of  Energy Equations 
 
The predictions of flexural-torsional buckling moment for a simply supported I-beam 
subjected to equal and opposite end moments by these two energy equations are the same 

M
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2

2
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However, the predictions of the flexural-torsional buckling loads for a simply supported I-
beam subjected to a central concentrated load  by the energy equation based on the small 
rotation matrix are substantially higher  than  those  by  the energy  equation  based of  the 
second order rotation matrix as shown in Fig. 2. Also shown in Fig. 2 are test results of Flint 
(1952),  analytical results of Timoshenko and Gere (1961), and ABAQUS (1996) finite 
element results. 
 
The predictions for a cantilevered I-beam subjected to a tip concentrated load by the energy 
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equation based on the small rotation matrix are much lower than those by the energy equation 
based on the second order rotation matrix as shown in Fig. 3. Also shown in Fig. 3 are test 
results of Anderson and Trahair (1972), analytical results of Timoshenko and Gere (1961), 
and ABAQUS (1996) finite element results. 
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              Fig. 2 Lateral buckling of  simply                         Fig. 3 Lateral buckling of 
                        supported I-beams                                               cantilevered I-beams 
 
Predictions by the energy equation based on the second order rotation matrix with four 
elements agree well with test and analytical results. ABAQUS four element results are less 
accurate. 
 
This indicates that the energy equation based on the small rotation matrix is not accurate. 
This has been realised by some researchers who use the small rotation theory in the finite 
element buckling analysis. They modified the energy equation by adding an additional term 

− ∫1
2

2
0

Qu dzb

L

b
' φ . The energy equation based on the small rotation matrix is then modified to 

the same as the energy equation based on the second order rotation matrix because 
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when M ux b, ,' or φb  is equal to zero at both ends of a beam. 
 

It is noted that the shear force in this additional term  − ∫1
2

2
0

Qu dzb

L

b
' φ  should be calculated 

from moments M x  by rigid body equilibrium,  not derived from “bending shear strains”. The 
“shear force” derived from the bending shear strains is not the real one, because bending 
shear strains should be equal to zero according to Bernoulli assumption. In fact, if a rotation 
matrix is orthogonal, the bending shear strains obtained from the rotation matrix are equal to 
zero. Non-zero bending shear strains arise from the fact that the rotation matrix is not 
orthogonal. Therefore, the additional term is added by the engineering judgment, not by the 
rigorous mathematical derivation. 
 
 
 
EFFECTS OF APPROXIMATIONS ON POSTBUCKLING ANALYSIS 
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Nonlinear Incremental Equilibrium 
 
Nonlinear incremental equilibrium equations can be written as 
[ ]k r pT { } { }Δ Δ=                       (16) 
where Δ  indicates the increment, the load vector is { } { , , , , , , }p Q Q Q M M T Bx y z y x

T= , the 
node displacement vector is { } { , , , ' , ' , , , , , ' , ' , }r u v w u v u v w u v T= 1 1 1 1 1 1 2 2 2 2 2 2φ φ , and the 
tangent stiffness matrix [ ]k T  is given by 
[ ] [ ] [ ]k k kT G= +                     (17) 
 
[ ]k  is the displacement stiffness matrix given by 

[ ] [ ] [ ] [ ][ ][ ]k N B D B N dz
L T T= ∫

0
                  (18) 

where [ ]N  = a shape function matrix, [ ]B  =  a matrix describing the relationship of variations 
of strains of a point  with variations of centroid displacements, and [ ]D  = the tangent 
modulus matrix given by 
[ ] [ ] [ ] [ ]D S E S dA

T ep= ∫∫                    (19) 
where [ ]S  = the coordinate matrix. 
 
[ ]k G is the geometric stiffness matrix given by 

[ ] [ ] [ ][ ]k N N dzG

L T
= ∫

0
Σ                    (20) 

where [ ]Σ  = the stress resultant geometric matrix. 
 
A large rotation model can be developed on the basis of the large rotation matrix (2) and a 
second order rotation model can be developed on the basis of the second order rotation matrix 
(3). 
 
Effects of Approximations 
 
Because the matrix [ ]B  is related to first variations of  strains and the matrix [ ]Σ  is related to  
second variations of strains,  approximations of the second order rotation model may affect 
the accuracy of matrices [ ]B  and [ ]Σ . 
 
For example, contributions of a term −xu '' cosφ  of the longitudinal normal strain ε P  of (5) to 
the third row of the matrix [ ]B  of the large rotation model is 
[ ]0 0 0 0 0 0 0 0− cos sin''φ φu                   (21) 
while the contributions of the corresponding term −xu ''  of (6) to the second order rotation 
model  is 
[ ]0 0 0 0 1 0 0 0 0 0−                   (22) 
 
When the twist rotation φ   is small,  contributions  of these terms have little difference. 
However,  the difference increases as the twist rotation φ   increases. 
 
The contributions of the term −xu '' cosφ   to the stress resultant geometric matrix [ ]Σ  of the 
large rotation model are 

( ) ( )Σ Σ4 8 8 4 3, , sin= = R φ    and    ( )Σ 8 8 3, cos''= R u φ    with         R x dAP3 = ∫∫ σ             (23) 
while the contribution of the term  −xu ''  to the second order rotation model is zero. 
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Numerical Examples 
 
The first example is flexural-torsional buckling and postbuckling  of an elastic aluminium I-
section two span continuous beam subjected to concentrated loads Q1 and Q2  at mid-span of 
each span. The self-weight is qy = 77 874.  N/m. Loading,  dimensions of the cross-section,  
and material properties are shown in Fig. 4. To induce flexural-torsional buckling, small 
initial crookedness (u u z Lc0 0 1= sin /π  and u Lc0 1 1 000 000= / , , ) was introduced. The beam 
was divided into eight equal elements.  
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         Fig. 4 A continuous beam                                   Fig. 5 Buckling and postbuckling  
                                                                                            of a continuous beam  
 
The results are compared with the test results of Woolcock and Trahair (1972) in Fig. 5 
where Qcr  is the value of  Q2  at buckling and u  is the lateral displacements of mid-span A 
and B . The buckling  loads predicted by both the large rotation model and the second order 
rotation model are the same and agree well with the test results. The postbuckling behaviour 
predicted by the large rotation model agrees well with the test result. However, the 
postbuckling behaviour predicted by the second order rotation model is significantly different 
from the test results. 
 
The second example is torsional buckling and postbuckling of a continuously braced beam. 
Dimensions of the cross-section and material properties are shown in Fig. 6. The beam is 
subjected to a central concentrated load Q at the centre of the top flange ( y = −130 65.  mm). 
The beam span is L = 4 4.  m. It does not buckle flexural-torsionally because it is laterally 
continuously braced, but may buckle torsionally. To induce torsional buckling,  initial twists 
of φ φ π0 0= c z Lsin /  with φ 0 0 00088c = .  radian were introduced. The beam was divided into 
four equal elements. 
 
Variations of the central twist rotation φ  with the load Q are shown in Fig. 7. The elastic 
buckling load (250 0.  kN) predicted by the second order rotation model is higher than that 
(2133.  kN) predicted by the large rotation model. The inelastic buckling load (134 2.  kN) by 
the second order rotation model is also higher that that (129 6.  kN) by the large rotation 
model. The  
postbuckling behaviour predicted by the second order rotation model  is much stiffer than that 
predicted by the large rotation model. 
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   Fig. 6 BHP 10UB29 I-section                          Fig. 7 Torsional buckling and postbuckling 
                                                                                       of a continuously braced beam 
 
EFFECTS OF APPROXIMATIONS OF NUMERICAL INTEGRATION 
 
Numerical Integration Scheme 
 
Numerical integration is usually used to check the yield criterion (9) and to calculate the 
stress resultants and elastic-plastic stress-strain matrix [ ]E ep of (11) after yielding. Numerical 
integration is approximate and its accuracy is related not only to the integration technique, 
but also to the arrangement scheme of integration points over the cross-section. Because the 
effective stress σe of (9) consists of longitudinal normal stress σP  and the uniform torsion 
shear stressτ P , an integration scheme over the cross-section has to take distributions of  both 
σP  and τ P  into account. Any integration scheme that does not describe the distributions of  
σP  or τ P  correctly would not  perform a correct inelastic analysis. The integration scheme of 
this paper is compared with the default integration scheme of ABAQUS (1996)  beam 
element in space in Fig. 8. Also shown in Fig. 8 is the uniform torsion shear stress 
distribution. The shear stress is proportion to the distance from the mid-thickness surface and 
vanishes at the mid-thickness surface. The ABAQUS  integration scheme uses Simpson’s 
three point rule and defines the integration points exactly at the mid-thickness surface where 
τ P = 0, so that it fails to include any uniform torsion shear stress in the yield criterion. In 
fact,  ABAQUS beam element in space reduces the yield criterion (8) to a uniaxial yield 
criterion σ σP y= . The integration scheme shown in Fig. 8(b) is used in this paper. It consists 
of eight triangles for each flange and web. Gauss quadrature integration method is used. It is 
consistent with the distributions of both the longitudinal normal stress and the uniform 
torsion shear stress, so that the yield criterion, stress resultants and elastic-plastic stress-strain 
matrix obtained by this scheme are accurate. It can also predict the first yield very well. 

(a) Shear stress distribution (b) Integration scheme (c) ABAQUS default integration

τ
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τ
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 Fig. 8 Integration schemes 

Numerical Example 
 
A simply supported beam subjected to a central concentrated load is used to investigate the 
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effects of integration schemes. Dimensions of the cross-section and material properties are 
shown in Fig. 6. The span of the beam is L = 4 4.  m. Effects of integration schemes on the 
inelastic nonlinear postbuckling analysis  are demonstrated by comparing elastic load-
displacement relationships in Fig. 9 with inelastic load-displacement relationships in Fig. 10. 
The elastic results of ABAQUS (1996) with eight elements are identical to those of the large 
rotation model with four elements. The elastic results of ABAQUS with four elements predict 
a higher buckling load and postbuckling behaviour. The second order rotation model with 
four elements predicts the correct buckling load but much stiffer postbuckling behaviour. 
Inelastic results of the second order rotation model are very close to those of the large 
rotation model  except that the postbuckling behaviour is slightly stiffer. ABAQUS inelastic 
results  with four or eight elements predict a higher inelastic buckling load and postbuckling 
behaviour due to the incorrect integration point scheme over the cross-section. 
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     Fig. 9  Elastic buckling and postbuckling      Fig. 10  Inelastic buckling and postbuckling 
 
CONCLUSIONS 
 
Approximations affect the flexural-torsional buckling and postbuckling analysis of beams 
significantly in some cases. The energy equation based on the second order rotation matrix 
predicts correct flexural-torsional buckling loads of beams while the energy equation based 
on the small rotation matrix  does not predict correct bulking loads except for uniform 
bending.  The energy equation based on the small rotation matrix can be modified into the 
energy equation based on the second order rotation matrix by adding an additional term.  
 
The large rotation model predicts correct elastic and inelastic flexural-torsional buckling and 
postbuckling behaviour of beams. However,  the second order rotation model predicts higher 
inelastic buckling loads for slender beams and much stiffer postbuckling behaviour because 
some significant terms are lost in the second order rotation model due to approximations. 
 
The numerical integration scheme over the cross-section needs to be consistent with stress 
distributions. The default integration scheme over the cross-section of ABAQUS beam 
element in  space  is  not  consistent  with   stress  distributions,  so that it does not correctly  
predict the inelastic flexural-torsional buckling and postbuckling behaviour of beams. The 
integration scheme over the cross-section proposed in this paper is consistent with the stress 
distributions and produces correct inelastic flexural-torsional buckling and postbuckling 
behaviour of beams. 
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