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ABSTRACT 
 

Air inflated beam structures may be used as an alternative to structures fabricated from 
conventional  materials in cases where limiting constraints are placed on rate of assembly 
and, more significantly, structural mass. Unlike conventional structures, linear elastic 
theories do not apply. To the contrary, inflatable structures demonstrate strong geometric 
non-linearity arising from large displacements and potential fabric wrinkling. In addition, 
the fabric material usually exhibits strong orthotropy. 
 
In order to investigate the possibilities of inflatable structural forms and to fulfil their 
design potential, a reliable analysis tool is required. This paper presents a mixed or hybrid 
approach to the numerical analysis of pneumatic beam structures. A geometrically non-
linear triangular finite element formulation, used to discretise the pressurised membrane, is 
described. This element formulation, coupled with the Dynamic Relaxation algorithm, is 
used to provide solutions to the deflections and stresses for a number of  air-inflated 
cantilever, arch and beam structures both before and after wrinkling of the orthotropic 
fabric material. The numerical method is shown to lead to a smooth and computationally 
efficient solution procedure, in which the static problem is effectively replaced by a pseudo 
dynamic equivalent. 
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1.0 Introduction 
 
Pneumatic structures, where pressure 
differentials wholly or largely ensure 
stability, have the potential to be 
considered as structurally efficient 
alternatives to conventional forms in 
situations where volume and mass are 
important or where rate of assembly is a 
factor. This may include structures 
required to cover or span large areas, 
structures to be used as emergency 
shelters, fluid retaining structures, 
deployable structures for the military, 
slides for rapid aircraft evacuation and 
many others. The recent and potential 
uses of air structures have been well 
documented (Otto, 1962; Leonard, 1974; 
Herzog, 1976; Dent, 1971;). In his book 
Tensile Structures Frei Otto describes a 
myriad of uses for both air-supported and 
air-inflated structural forms.  
One of the more interesting applications 
of the pneumatic structure discussed is 
the use of inflated cylindrical tubes as 
structural members. These air-inflated 
structural members lend themselves to 
situations where ease and rate of 
construction, as well as structural mass 
are crucial. Proposals have been made to 
use complex skeletal inflatables as large 
deployable space structures to support 
antenna reflectors (Girard et al., 1982; 
Reibaldi, 1985;  Authier and Hill, 1985) 
and solar concentrators (Grosman and 
Williams 1989). 
Structural Analysis of these inflated 
cylindrical beams have been performed 
using a number of different strategies. 
Research into the structural performance 
of inflated cantilevered beams under 
bending, torsion and buckling (Topping 
1964; Bulson 1973; Webber 1982) have 
been undertaken. Non-linear methods 
have also been used to model the 
stiffness of inflated cantilevered beams 
(Douglas 1969). Linear shell analyses  
have been used to model the buckling 
behaviour of inflated members (Leonard 
et al. 1960) in which an expression for 

the collapse load of a cantilevered beam 
is derived. Comer and Levy (1963) 
modelled the behaviour of cylindrical 
cantilever beams between incipient 
buckling and final collapse, in a manner 
similar to conventional beam theory. 
They derived an expression for the 
deflection of a cylindrical cantilever 
beam in terms of two dimensionless 
variables, which when solved gave the 
beam deflections. Main et al. (1992) 
reformulated this method using a model 
more applicable to fabric structures. 
These two papers used a classical 
solution to find the deflections and 
stresses under bending based upon 
conventional beam theory with an 
assumed stress distribution in the beam. 
Main et al. continued this work with two 
further papers (Main et al. 1994; Main et 
al. 1995) in which a revised bending 
model is formulated to take into account 
the biaxial state of stress within the 
structure.  
Numerical solutions to the specific 
problem of establishing the load-
deflection characteristics of pneumatic 
beams have not, however, been 
investigated in any great depth. Of the 
limited papers published Kawabata and 
Ishii (1994) used a non-linear finite 
element formulation to analyse a number 
of air-inflated beam structures.  
In this paper, an iterative technique is 
used to find the load deflection 
characteristics of inflated, cylindrical 
beams. Triangular elements are used with 
a Dynamic Relaxation algorithm to solve 
for the displacements and stresses during 
both the pressurisation and loading 
phases of each pneumatic beam. 
 
2.0 The Numerical Formulation 
 
2.1 Element Formulation 
 
A plane, three noded constant strain 
triangle has been adopted as the basis of 
the numerical formulation. In its standard 
form the constant strain triangle is 



 3

2θ

3θ  

1θ  

defined with six degrees of freedom - u 
and v displacements at each node. By 
assuming three orthogonal degrees of 
freedom at each node and reselecting the 
degrees of freedom as extensions of the 
three sides of the element, the complexity 
of the element stiffness matrix is reduced. 
More significantly in the case of the 
current class of problem, the choice of 
degrees of freedom enables the 
continuous membrane to be represented 
by an equivalent cable net, the analysis of 
which is computationally efficient in 
comparison to a conventional plane stress 
problem. Geometric nonlinearity may 
also be easily introduced. 
 

 
A full description of the numerical 
formulation is given in previous work 
(Gosling and Riches, 1997).  
The triangular element is formulated in a 
local 2 dimensional plane. The local X ′  
and Y ′  axes of the element lie in the 
same plane as the X and Y axes in which 
the material properties and stress state are 
defined (Figure 1). The strains in the X 
and Y directions are defined as ε X and εY  
respectively with the shear strain as γ XY . 
The side extensions of the triangular 
element are δ1 2 3, ,  for the three sides. 

The local 'Z  direction is defined to be 
normal to the surface of the element and 
calculated as: 
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respectively. The vector defining the 
local Y’ direction is calculated by the 
cross product of the vectors 

r
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r
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where 
r
X tr  is a vector in the local X 

direction. Using these three vectors the 
transformation matrix relating the local 
co-ordinate system to the global system is 
found: 
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The direct strain in each element side, i is 
used to solve for the local strains, ε : 
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Figure 1: The Triangular Element in the 
local and global co-ordinate systems. 
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or 

ε δ= B.    (7) 
 
where ai i= cos2 θ , bi i= sin2 θ  and 
ci i i= sin .cosθ θ  and B  is the matrix 
relating the element extensions to the 
element strains.  
The elasticity matrix relating the element 
strains to the element stresses is denoted 
as E . If an orthotropic material is to be 
considered then the coefficients of E  
are: 
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where E X  and EY  are the Young’s 
modulus in the X and Y directions, v XY  
and vYX are the poisons ratio in both 
directions and GXY  is the Shear modulus 
of the material. 
The element elastic stiffness matrix, EK , 
can be found directly from Finite 
Element Theory, noting that B  is 
independent of the local co-ordinates and 
assuming a constant thickness: 
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where V is the volume of the element. 
The geometric stiffness matrix, Kσ , 
models the contribution of the forces 
within the element to the overall stiffness 
of the element.  
The geometric stiffness is obtained using 
pseudo cables that are analogous to the 
geometric stiffness of the linear or bar 
element. 
The longitudinal direction of a bar 
element in the global co-ordinate system 

can be specified by the unit vector $c , 
given by the components: 
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where cx, cy and cz are the direction 
cosines in the x, y and z directions.  
Using these relationships and the moment 
generated by the element force, PN , it 
can be shown that the element geometric 
stiffness matrix is equal to: 
 

( )
( )K

P
l

I c c I c c

I c c I c c
N

t t

t tσ =
− − −

− − −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

3 3

3 3

$. $ $. $

$. $ $. $
 (11) 

 
The element side force, PN , is comprised 
of components due to the elastic straining 
and due to any initial prestress, σo . The 
natural force, PN , may be related to the 
element stresses from which the natural 
element force, PN , can be expressed as: 
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where To  is the vector of element side 
forces representing the initial stress, σo , 
within the element. 
The total stiffness matrix of the triangular 
element is  obtained by combining the 
elastic and geometric stiffness matrices 
as in: 

K K KE= + σ   (13) 
 

The continuum based triangular element 
can be represented by a triplet of pseudo 
cables possessing the elastic and 
geometric properties described above. 
The continuum is effectively replaced 
with a cable net (or bar net due to the 
admissibility of compressive natural 
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forces) whose stress field represents that 
of a continuum through the natural forces 
and stiffness in the cables. 
 
2.2 The Dynamic Relaxation 
Algorithm 
 
The Dynamic Relaxation algorithm is a 
method of solution based upon the 
principle that any body that is in motion 
will come to rest when it is in a state of 
equilibrium. A system of simultaneous 
equations is set up using this principle 
and the equations of dynamic equilibrium 
of a body in motion. These equations of 
dynamic equilibrium are given by:- 
 

P M C Kpq pq pq pq pq pq= + +. && . & .δ δ δ  (14) 

 
or alternatively: 
 

P K M Cpq pq pq pq pq pq− = +. . && . &δ δ δ  (15) 
 
and: 

R M Cpq pq pq pq= +. && . &δ δ          (16) 
 

where  P pq  = the external load vector 
 K pq  = the nodal stiffness 

R pq  = the out of balance nodal 
force 

 pqM = the fictitious nodal mass 
&&, &δ δ and δ  = the nodal 

acceleration, velocity and 
displacement 
C= the viscous damping 
coefficient 

 
The subscripts p and q refer to the pth 
node in the qth direction. The subscript q 
can take values 1-3 corresponding to the 
x, y and z directions respectively.  
Equation (16) describes a pseudo-
dynamic behaviour in which the structure 
oscillates about a position of equilibrium 
with gradually reducing amplitude, due to 
viscous damping. A more stable and 

efficient technique is kinetic damping, 
where the movements of the structure are 
arrested whenever a kinetic energy peak 
is detected. This results in a 
simplification of Equation (16) in which 
C is taken as zero: 
 

M R P Kpq pq pq pq pq pg. && .δ δ= = −      (17)  
 
After each energy peak is detected the 
current geometry is set and the whole 
process is re-started.   
The acceleration term in Equation (17) is 
the variation of velocity over a time 
increment δt using a central difference 
approximation. This leads to a recurrent 
equation for the nodal velocity: 
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To ensure numerical stability of the 
algorithm it has been suggested (Barnes 
1982) that the time increment δt should 
be such that: 
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Substitution of Equation (19) into 
Equation (18) gives: 
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Using these velocities at time t
t

+
δ
2

 the 

current nodal displacements can also be 
found using: 
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The pseudo-dynamic behaviour of the 
structure can be described using the 
Equations (17), (20) and (21). 
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The current kinetic energy, U k

t
t

+
δ
2 , is 

calculated using: 
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where N is the total number of nodes in 
the discretised system. 
An energy peak is deemed to have 
occurred in the time interval if the 
magnitude of the current kinetic energy is 
less than that of the preceding value. 
With the Dynamic Relaxation Algorithm 
the out of balance forces at each node are 
divided by the direct component of 
element stiffness, from all elements 
meeting at that node, in order to calculate 
the nodal velocity. The required stiffness 
term should be determined from the sum 
of the element stiffness matrices meeting 
at the relevant node. This matrix should 
then be inverted to yield the direct 
flexibility terms taking into account the 
coupling effects of the all the degrees of 
freedom. However as the determinant of 
an unconstrained element is zero, this 
cannot be achieved. It is therefore only 
the diagonal terms of element stiffness 
matrices that are summed at each node.  
 
2.3 The Inflated Cantilever Beam 
Model 
 
The non-linear behaviour of an inflated 
beam structure is represented within the 
numerical model.  
The model takes into account the nature 
of material used in pneumatic structures 
and the possibility of fabric wrinkling 
whereby compressive stresses are 
inadmissible (this should not be confused 
with admissible compressive forces in the 
bar elements). The principle stresses in 
each element are calculated and 
monitored. If one or both of the principle 
stresses are found to be negative, the 
element stresses ( xσ , yσ  and xyτ ) are 
recalculated, with any negative principle 

stresses set to a value close to zero. The 
element side forces and the geometric 
stiffness are then recalculated using this 
modified stress field. 
The internal pressure present is 
represented within the model. The 
analysis is performed with an equivalent 
loading pattern representing the internal 
pressure present within the structure.  
This loading pattern is calculated using 
the local co-ordinate system of each of 
the elements within the structure. The 
internal pressure acts normal to the 
surface, or in the local Z’ direction, of 
each element. Using the transformation 
matrix, defined in the initial element 
formulation, these normal loads can be 
transformed into the global system, in 
order that loads arising from a number of 
arbitrarily orientated elements can be 
combined. 
Nodal loads due to internal pressure can 
be applied to any structure that can be 
described using the triangular elements. 
Any changes in nodal loads that occur 
because of changes in the surface 
geometry of the structure, due to external 
loads or the pressure itself, can also be 
modelled.  
In order to model the effects of the 
internal pressure upon the cylindrical 
beam accurately the numerical method 
has two distinct stages; 1. pressurisation 
and 2. loading. Once equilibrium is 
attained in the pressurisation phase any 
external point loads are applied and the 
algorithm is restarted.  
 
3.0 Numerical Results 
 
In order to verify the numerical model 
presented, initial analyses of an inflated 
cylindrical cantilever model were carried 
out and compared with numerical results 
obtained using the commercially 
available LUSAS Finite Element package 
(Figure 2).  
A quadratic, triangular semi-loof shell 
element and a Total Lagrangian 
incremental and iterative solution method 
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were used in the LUSAS analysis. As the 
LUSAS package does not include a no-
compression model, the results were 
obtained at loads below the expected 
wrinkling load of an inflated cylindrical 
cantilever beam.  

A numerical analysis, using Dynamic 
Relaxation, of the 300mm diameter 
inflated cantilever, subject to an internal 
pressure of 16,900 N/mm2 was carried 
out and compared with the results 
obtained using the commercial package. 
 
Table 1: Deflections of 300mm diameter 
cylindrical cantilever. 

Load (N) Deflection 
(mm) 

Nonlinear 
Deflection from 
LUSAS (mm) 

5 1.438 1.436 
10 2.876 2.872 
15 4.313 4.308 
20 5.749 5.744 
25 7.184 7.719 
30 8.618 8.608 
35 10.05 10.04 
40 11.48 11.48 
45 12.91 12.91 
50 14.34 14.35 

 
It can be seen that there is extraordinarily 
good correlation between the results 
obtained using the LUSAS Finite 
Element package and those obtained 
using the numerical technique presented. 
These initial results show that the 
triangular element presented is 

appropriate for the analysis of this class 
of problem.  
Further analyses were carried out, using 
Dynamic Relaxation, on inflated 
cylindrical cantilever and simply 
supported beam models of length 400mm 
and radius 25mm. In the analyses the 
material was assumed to be isotropic and 
the Young’s modulus and Poisson’s ratio 
were set as 4x103 N/mm2 and 0.1 
respectively. 
The axial tension in a cylindrical beam, 
in the range of linear theory, subject to 
bending can be expressed as: 
 

I
Mr

t
prN x ±=
2

 (23) 

 
where:  p = internal pressure 
 r = radius of cylinder 
 t = material thickness 
 M = bending moment 
 I = the second moment of area  
   = πr t3  for a circular tube 
 
The first part of Equation (23) represents 
the longitudinal pre-stress caused by 
inflation, the second part the stresses 
induced by bending. 
Incipient wrinkling of a fabric  
cylindrical beam will occur when xN  
becomes negative.  
The wrinkling of an inflated cantilever 
beam, subject to a laterally applied end 
load will begin when the load, wP , 
exceeds: 

l
prPw 2

3π
=   (24) 

  
The wrinkling load in a simply supported 
beam subject to a centrally applied point 
load is given by: 

l
prPw

32π
=   (25) 

 
For the cylindrical cantilever beam 
analysed subject to an internal pressure of 
0.035 N/mm2, incipient wrinkling should 

Figure 2: A screen shot from the LUSAS 
Finite Element package. 

Figure 3: Structure Mesh used in Dynamic 
Relaxation analysis of cantilever and 
simply supported beam structures. 
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occur at a load of 2.15 N. The wrinkling 
load of the simply supported beam 
analysed will therefore be 8.6 N.  
Theoretical collapse of the beams will 
occur when the longitudinal stress around 
the circumference of the cylinder is equal 
to zero. 
It can be seen that for a constant 
externally applied moment, M, wrinkling 
of cylindrical inflatable will occur when 
the internal pressure, p, drops below: 
 

tr
Mp 3

2
π

=   (26) 

 
Incipient wrinkling of the cantilever and 
simply supported beams, analysed with a 
constant applied moment, will occur as 
the internal pressure drops below 0.1 and 
0.15 N/mm2 respectively. 
Two separate numerical analyses were 
carried out on each of the cylindrical 
cantilever and simply supported beam 
structures. Identical meshes were used for 
both analyses (Figure 3). 
The structures were initially analysed 
subject to a constant internal pressure of 
0.035 N/mm2 and an increasing external 
load to collapse. In addition an analysis 
of the structures subject to a varying 
internal pressure and constant point load 
was also carried out. The cantilever and 
simply supported beams were subject to a 
constant point loads of 5.0 N and 50.0 N 
respectively.   
The load-deflection characteristics of 
these two beam structures can be seen in 
Figure 4 and Figure 5. 

The deformation of a semi-circular arch 
has also been investigated (Figure 6). A 
12m span, 400mm radius arch structure 
was analysed using the numerical method 
inflated to a constant internal pressure of 
0.01N/mm2 with a centrally applied 
external load. From the numerical 
analysis incipient wrinkling of the arch 
structure occurs at an approximate load 
of 600 N (Figure 7).  
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Figure 4: The Load-Deflection and Internal 
Pressure-Deflection characteristics of an 
inflated simply supported beam. 
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4.0 Conclusions 
 
A Geometrically non-linear numerical 
method has been used to provide 
solutions to the load-deflection 
characteristics of a number of inflated 
cylindrical beam structures. 
The analyses carried out on inflated 
cantilever and simply supported beams 
clearly illustrate the effect of fabric 
wrinkling. The results suggest that, for 
this class of structure, much of the 

nonlinearity of the load-deflection curve 
arise because of, or after, fabric material 
wrinkling. 
The deflections of the cantilever beam 
structure increase immediately after 
incipient wrinkling. The deflections of 
the simply supported beam do not, 
however, increase to the same extent 
immediately after wrinkling. This would 
suggest that the overall stiffness of the 
simply supported beam is not affected by 
fabric wrinkling to the same extent as 
that of the cantilever.  
The results indicate a significant decrease 
in beam stiffness after incipient 
wrinkling, or local buckling, of the 
material. The analysis does, however, 
show that inflated beam structures exhibit 
considerable load bearing capacity after 
the onset of wrinkling, arising from a 
redistribution of bending stresses within 
the fabric. 
The deformation of a semi-circular arch 
subject to a centrally applied external 
load has also been investigated. The 
results of this analysis show a similar 
load-deflection curve to that of the other 
inflated beam structures. The arch 
structure is, however, a more stable form 
than both the simply supported and 
cantilever beams. This is illustrated by 
the fact that fabric wrinkling of the 
material does not have as great an effect 
on the deflections and the eventual 
collapse load in comparison to the 
previous forms. 
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Figure 5: The Load-Deflection and Internal 
Pressure-Deflection characteristic of an 
inflated cylindrical cantilever beam. 

Figure 6: Mesh used in Dynamic 
Relaxation analysis of  inflated arch 
structure.
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The analyses also show the effect of 
internal pressure and radius of cross 
section upon structural performance. The 
internal pressure increases both the cross 
sectional area, and the shear stiffness of 
the structure.  An increase in radius has 
the effect of increasing the second 
moment or area of the beam and also the 
longitudinal and radial pre-stresses 
within the fabric due to inflation. 
Difficulties arise using this numerical 
formulation with the dynamic relaxation 
algorithm, regarding the stability of the 
algorithm. A considerable amount of time 
is needed to analyse more complex 
structures or when geometry or loading 
patterns change considerably.  
Further work is to be carried out using 
this numerical method to analyse the 
structural performance of other arch, 
beam and tent-like air-inflated structures. 
Further investigation of the structural 
performance of semi-pneumatic 
membrane structures, comprising of 
inflated cellular, tube and pre-stressed 
membrane elements, is planned. 
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Figure 7: The Load-Deflection 
characteristic of an inflated arch structure.


