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1. Introduction 
 
This study determines and compares the displacement at midspan of classical structures of 
different morphologies and deals with classical isostatic trusses and the simple beam. 
 
The structure is made of a homogeneous material of  allowable stress σ. It is completely 
isostatic, of height H, with two supports at a distance L, uniformly and vertically loaded by 
downward forces of a total intensity F (including its proper weight). For the trusses, the 
section of each beam between two nodes is considered as a constant. 
 
Its dimensions are calculated considering the only criterion of resistance : 
 

•  For trusses : each bar is working at the allowable stress of the material. 
• For the simple beam : the constant section is calculated so that the allowable stress is 

reached at midspan. 
 

The phenomena of instability are not taken in account and the junctions between the members 
of the trusses are considered as perfect articulations. Stresses and strains resulting from shear 
are also not taken into account. 
 
2. The indicator of displacement δ 
 
An indicator of the vertical displacement of a structure at midspan, δ, independent of the 
characteristics of the material, the intensity of the forces F and the span L is first defined, and 
its value to different structures of various slenderness' L/H will be compared. 

The indicator of displacement at midspan,  dimensionless, can be described by : Δ =
E

L
δ

σ
    

where : 
 

• δ  is the vertical displacement at midspan; 
•E  is the modulus of elasticity of the material; 
• σ  is the allowable stress of the material; 
• L  is the horizontal projection of the distance between the supports of the isostatic 

structure. 
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It corresponds to the vertical displacement at midspan of a unit structure ( L = 1m), subjected 
to vertical loads of a total unit intensity ( F  = 1N), constituted of a material of a unit 
allowable stress (σ = 1Pa) and of a unit elasticity modulus ( E =1Pa). 
 
Indeed : 
 

• In the case of a truss with "i" bars, taking the formula of O. Mohr (1874), and noting that 
each bar lk of section Ωk is subjected to the allowable stress σ , one obtains : 

 

 f k k=σ .Ω  , thus  
E
Ll

E
ff

k

ik

k k

kk σδ =
Ω

=∑
=

=1

1

∑
=

=

ik

k
kf

1

1 l
L
k  

 
Where : - 1

kf  is the axial stress in bar kl , when the structure is subjected to a unit 
vertical load at midspan. 

 - kf  is the axial stress in the same bar kl , when the structure is subjected to 
uniformly distributed vertical and downward forces of total intensity F. 
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• In the case of a straight or curved bar subjected to axial load, with a uniform and 

continuous section subjected at one of its points to the allowable stress or with continuous 
but variable section subjected at any point to the same allowable stress σ = F / Ω  , one 
obtains : 

 

δ  � FL
EΩ

; δ �
L
E
σ    thus   : Δ = =

E
L
δ
σ

constant  

 
• In the case of a beam in bending, with a constant and continuous section and symmetrical 

with respect to the neutral axis, subjected on one of its points, at midspan, to the 
allowable stress σ, one obtains : 

 

σ �
FLH

I
 

Furthermore, as 
IE

FL3

÷δ   and  
H
L

E
Lσ

δ ÷   , thus Δ =
E

L
δ

σ
 � L

H
  

 
3. The indicator of displacement for the WARREN truss 
 
Figure 1 illustrates the stresses in the bars of a WARREN truss, with "n" even, subjected 
firstly to "n " vertical loads F/n of total intensity F and secondly to one single unit load at 
midspan. 
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Figure 1 
 

The indicator of displacement is composed of 3 parts, corresponding respectively to the lower 
chord, the upper chord and the diagonals.  This last part is obtained noting that the stress 
corresponding to the two central diagonals in the main structure subjected to "n " vertical 
loads of total intensity "F" is equal to zero . 
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After simplification of the expression, one finds :  ( )
H
L

n
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For an uneven number "n" of panels, the same reasoning as above leads to the following 
result :  
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Figure 3 
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Figure 4 
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The right of figure 3 illustrates the values of Δ for the WARREN truss for a number "n" of 
panels between 2 and 18, and for a slenderness L/H between 0 and 18. One notes that : 
 

•  The optimum optimorum is obtained for n = 2 and corresponds to L/H = 1,789 and Δ = 
1,118; 

•  The envelope curve of the WARREN truss is obtained with the curves corresponding to 
n=2 and n=3; 

•  The minima of the curves for n=2, 4, …16 and for n=1, 3 ..17 are almost located on a 
straight line. 

 
The left part of figure 3 has to be considered in conjunction with the right part of figure 3. It 
gives the values of δ/L for various E/σ. It allows immediate reading of the relative deflection 
for the structures in any material, such as concrete (E/σ≈2000), mild steel (E/σ≈1500) or 
wood (E/σ≈1000) 

80
0

10
00

12
00

14
00

16
00

18
00

20
00σ/E :

δ/L=1/2000

δ/L=1/1000

δ/L=1/500

δ/L=1/200

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14 16 18

WARREN trusses

PRATT trusses

L/H

1,118

1,414

Simple beams (symmetrical sections)

Envelope of the curves

Δ=Eδ/σL

 
Figure 5 

 
4. Indicator of displacement for the PRATT truss 
 
Figure 6 illustrates the stresses in the bars of a PRATT truss subjected to one single unit load 
at midspan. The same reasoning as above leads to the following result :  
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Figure 4 illustrates the values of Δ for the PRATT truss for a number "n" of panels between 2 
and 18, and for a slenderness L/H between 0 and 18. One notes that : 
 

•  The optimum optimorum for the PRATT truss is obtained for 2/ =Δ=HL ; 
•  The minima of the curves for n=2, 4, …16 and for n=1, 3 ..17 are almost located on a 

straight line. 
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Figure 6 

 
5. Indicator of displacement for the single beam 
 
Noting that the displacement at midspan of a single beam subjected to a uniformly distributed 

load P [N/m] is 
IE

LP
384
5 4

=δ  and that the bending moment at midspan is 
8

2LP   , so that the 

allowable stress at that midsection is 
I
HLP

16

2

=σ   , one finds : 
HE

L
24
5 2σ

δ =   . 

 
The displacement due to bending at midspan of a unit structure ( L = 1 m), subjected to 
vertical loads of a total unit intensity ( F  = 1N), constituted of a material of a unit allowable 
stress resistance (σ = 1 Pa) and of a unit elasticity modulus ( E =1 Pa) is thus equal to 

H
L

24
5

=Δ   . This relationship is not valid for low L/H ratios when the shear deformation are 

to be taken in account. 
 
The indicator of displacement corresponding to a single beam is thus linearly proportional to 
the slenderness L/H. Figure 5 illustrates the values of Δ for the simple beam, with respect to 
the envelope curves of Δ corresponding to the WARREN and PRATT trusses. 
 
6. Conclusion 
 
Figure 5 suggests that, for any slenderness, the WARREN truss is always less deformable 
than the PRATT truss, and the simple bended beam is always less deformable than both 
trusses. 
Further studies will search for the values of Δ of other structures, such as arches or cables. 
 
 


