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Abstract - The paper presents a proposed extension of the numerical handling, developed by 
us for single-layer or double-layer pin-jointed space grids, to space frames with nodes of rigid 
connection. The method is suitable for numerical description of local and global loss of 
stability of bar structures supported along the boundary and covering very large area, or of 
other large bar structures having usually many redundant bars. 
 
 
NOMENCLATURE 
 
b number of bars 
Bi transfer matrix of bar i 
j number of internal nodes 
j1 number of external nodes 
j0 number of all nodes: j0 = j + j1 
hi, ki signs of the starting point and of the end point of bar i (i = 1, 2,..., b) 
li length of bar i 
K stiffness matrix of the structure 
F hyperdiagonal matrix composed of matrices Fi 
Fi flexibility matrix of bar i 
G equilibrium matrix of the structure 
q hypervector of loads on the structure 
qc 6-dimensional vector of generalized load applied at node c 
Q flexibility matrix of the structure  
rc generalized position vector of node c (c = 1, 2,..., j0) 
rc,n nth component of generalized position vector of node c (n = 1, 2,..., 6) 
s hypervector of forces in bars of the structure 
si ≡ ski 6-dimensional vector of generalized force in bar i 
t hypervector of kinematic loads on the structure 
ti 6-dimensional vector of kinematic load on bar i 
Ti 6×6 matrix making transformation between the local (belonging to bar i) and the 
 global  coordinate systems 
u hypervector of nodal displacements of the structure 
uc 6-dimensional displacement vector of node c 
uc,n nth component of displacement vector of node c (finite increment of rc,n) 
( )T transpose 
• scalar product 
 



1. INTRODUCTION 
 
The aim of the paper is to survey concepts to analyse phenomena occurring during one-
parameter (piecewise one-parameter) loading process of elastic bar structures composed of 
members rigidly connected to each other. Methods are particularly important that are suitable 
for numerical description of local and global loss of stability of bar structures supported along 
the boundary and covering large area. The structures in question can have many thousands of 
bars with high order of redundancy, and their strength and stability needs tremendous effort 
and computing time. Because of the large dimensions, the organization of computation is an 
important problem also from theoretical point of view. 

For pin-jointed bar structures we have executed such an investigation, and we reported on 
the results in a series of papers (Szabó and Tarnai, 1993, 1997; Tarnai and Szabó, 1995). In 
order to reduce the computational needs we proposed a trihedral composition of the structure, 
and an efficient way of forming the inverse of the equilibrium matrix of the system worked 
out by Sherman and Morrison (1949). 

The analysis of a bar structure with real (rigid) connections between bars is much more 
complicated than that with pin-jointed connections. The fundations of the procedure proposed 
in this paper for rigidly jointed bar structures have been laid down in the book by Szabó and 
Roller (1978), using the method of displacements; but the numerical handling in principle is 
the same as that we used for single-layer or double-layer pin-jointed space grids (Szabó and 
Tarnai, 1997). In order to keep the discussion simple all connections, even the connections to 
the foundation, will be supposed to be rigid.  

In this paper, Section 2 presents the basic relationships for the change of state under small 
displacements that, apart from some little changes in the notation, are the same as in the book 
by Szabó and Roller (1978). In Section 3, the principle of the automatic generation of the 
basic equations and our procedure suggested for the calculation of the small-displacement 
change of state is shown, and our proposals for handling of local and global loss of stability 
are outlined.  

The analysis of post-critical state and the presentation of our computational organization 
conception, necessary for calculation of space grids covering very large space, is left to a 
future paper.  
 
 
2. BASIC RELATIONSHIPS 
 
In the initial state, the structure contains bars of straight axis with constant cross-section. The 
bars rigidly join the nodes. The coordinates of the theoretical centres of the nodes are 
considered known in the initial state, the axis of a bar passes through the theoretical centres of 
the nodes, and in the initial state the length of a bar is determined by coordinates of the nodal 
points at the ends of the bar. During the change of state of the structure, the values of the 
coordinates of the nodes and the positions of the coordinate systems attached to the nodes 
change. It is suitable to give this change by a 6-dimensional vector. 

Let us denote the initial coordinates and the displacement coordinates of node c according 
to the following: 
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After finite displacements, the new coordinates are contained in vector (rc + uc). The node 
coordinates of the structure are given in the x,y,z system. It is suitable that the data 



corresponding to a bar are given in a coordinate system attached to the bar, for instance, for 
bar i in the system (ξ,η,ζ)i  i = 1, 2,..., b. Axis ξ is identical to the centroidal, axis η is 
identical to the larger principal axis of inertia of the cross-section, and axis ζ is perpendicular 
to both axes ξ and η. If a vector a is given in the system Ξ(ξ,η,ζ), and it is denoted by a(Ξ), 
then this vector a in the system X(x,y,z) can be given by the transformation a(X) = T • a(Ξ) 
where T • TT = E (unit matrix). The rotation matrix Ti of bar i, where e.g. sign couple x,ξi 
denotes the cosine of the angle between the axes x and ξ, is 
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Internal forces in bar i of starting point hi and end point ki, associated with point ki, are given 
by vector si: 
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External forces can load the structure only at the nodes. Therefore, the force vector associated 
with the end point ki, denoted by si instead of ski, is sufficient to determine the internal forces 
at any cross-section of the bar. Internal forces in the cross-section at point hi can be 
determined by the transfer matrix: 

 
iihi sBs •=  

where  
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and the length of bar i is li. The components of the load vector at node c are concentrated 
forces Rx, Ry, Rz and couples Nx, Ny, Nz: 
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If the displacement vector of the starting point hi of bar i is uhi(Ξ), then vector uki giving the 
rigid motion of end point ki of bar i in its own coordinate system (Ξi) is 
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Taking into account that )(X)( ikiiki Ξ•= uTu  and X)()( T

hiiihi uTu •=Ξ , in the coordinate 
system (X): 
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Under the forces and couples applied at the end point ki of bar i, which is considered rigidly 
built in at its starting point hi, displacements arise at end point ki. It is suitable to describe 
them in the coordinate system (Ξi). Doing so, the displacement at point ki resulted from the 
force at ki (that is, from force si in bar i) can be given by the expression 

 
)()( iiiiki Ξ•=Ξ sFu  

 
where Fi is the flexibility matrix of bar i of length li and cross section with tensional, bending 
and twisting rigidities EAi, EJηi, EJζi and GJξi (but siplifying the notation and giving subscript 
i for the entire matrix instead of the entries of the matrix): 
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On the other hand, force si in bar i, that is, force in bar at point ki, resulted from the 
displacement of the end point of the bar is obtained by the inverse of F as 
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2.1 EQUILIBRIUM EQUATIONS 
Equilibrium of nodes working as finite rigid bodies, and equilibrium of elastic bars each 
connecting two nodes is in question. It is enough to write the relationships for an individual 
bar and for two nodes at the ends of the bar. Let hi and ki be two nodes connected by bar i 
whose starting point is hi and end point is ki. Force si in bar is applied by definition at end 
point ki of the bar. On the surface of positive normal ξ of the cross-section hi, at the same time 
at the node hi, force iihi sBs •=  arises, and the bar i transmits force -si to node ki. Equilibrium 
of bar i requires external loads qhi and qki applied at nodes hi and ki, given in the coordinate 
system (X). Therefore, the equations of nodal equilibrium are 
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It is easy to check that bar i under forces -shi and si arising at the starting point and the end 
point is in equilibrium. From the elementary equilibrium equations (1), the equilibrium 
equation of a bar structure arbitrarily composed of rigidly connected bars: 

 



 .0=+• qsG  (2) 
 
The structure of the equilibrium equations is illustrated in the Appendix. 
 
2.2 COMPATIBILITY EQUATIONS 
It is supposed that, on bar i, kinematical load independent of the actual forces can be applied: 
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The relationship between displacement vectors uhi and uki of the starting point and end point 
of bar i is described by the compatibility equation: 

 
iiihiiiki tsFuTBuT +•+••=• TTT
 

or after rearrangement: 

 .0TTT =+•+•−•• iiikiihiii tsFuTuTB  (3) 
 
From the elementary compatibility equations (3), for all displacement vectors we have the 
compatibility equation of the structure: 

 
 0T =+•+• tsFuG  (4) 
 
where GT is the compatibility matrix. 
 
 
3. AUTOMATIC GENERATION OF THE FUNDAMENTAL EQUATIONS, AND THE 
CALCULATION OF SMALL DISPLACEMENT CHANGE OF STATE 
 
Under given structural geometry, the generation of nodes and the initial coordinates can be 
executed with the procedure worked for bar-and-joint assemblies (Szabó and Tarnai 1997). 
For composition of the list of bars, the trihedral generation can be used. The list RU(i, hi, ki) 
of bars constitutes the base of the generation of equilibrium matrix G.  
 
3.1 EQUATION OF CHANGE OF STATE FOR SMALL DISPLACEMENTS 
If we unite the equilibrium and the compatibility equations in a matrix form, then we have 
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that is called the equation of change of state. Considering it as a set of two equations: 

 

0
0          

T =+•+•

=+•

tsFuG
qsG

 

 
and supposing that det(F) ≠ 0, it is easy to give the main points of the solution procedure. 
(a) We express force vector s from the second equation: 

 
.1T1 tFuGFs •−••−= −−  



 
(b) By substituting it in the first equation we have 

 
.01T1 =+••−•••− −− qtFGuGFG  

 
(c) Introducing the notation T1 GFGK ••= −  it can be written in the form 

 

 tFGquK ••−=• −1
 (5) 

 
whence u can be determined by inverting K. 
(d) Knowing u and using the expression in (a), s can be determined. 
 
3.2 GENERATION OF MATRIX G 
The number of block-rows of G is equal to the number of the internal joints j, and the number 
of block-columns of G is equal to the number of bars b. In the block-column corresponding to 
the bar i: in the block-row corresponding to the starting point hi of the bar, matrix Ti • Bi is 
present, in the block-row corresponding to the end point ki of the bar, if ki ≤ j, -Ti is present, 
and 0 is otherwise. 
 
3.3 GENERATION OF STIFFNESS MATRIX K 
For generation of stiffness matrix K, the following algorithm is used instead of that used in 
Szabó and Roller (1978). This consists of a simple expression: 
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where gi is the ith block-column in matrix G: 

 
[ ]. ...21 bgggG =  

 
3.4 THE PROPOSED PROCEDURE FOR CALCULATION OF SMALL DISPLACEMENT CHANGE 
OF STATE  
It is supposed that in (5) t = 0. It is so, because either there is no kinematic load on the 
structure or the kinematic load is reduced to a nodal load by the expression 

tFGq ••−= −1
red , and q - qred is considered as q. Then the equation 

 
quK =•  

 
should be solved with a suitable procedure, or taking the inverse K-1, the displacement 
coordinates can be determined for arbitrary q: 

 
.1 qKu •= −  



 
At the beginning of the small displacement procedure, for the increase of the one-parameter 
load, the change of u is accepted to be linear up to a limit where the crookedness of 
compressed bars exceeds a permissible (prescribed) value. Then, the change of state is still 
considered as that of small displacement, but the structure does not consist of bars of straight 
axis any longer but curved axis. According to this fact, the flexibility matrix should be 
modified, as the force component parallel with axis ξ, acting at the end of the bar, produces a 
bending moment in the bar. The procedure presented below is based on this phenomenon, and 
preserves the properties of the second-order theory. 
(a) In each load step, forces si in bars and displacements u of nodes become known. Each 
component of a force in bar produces deformations of the bar considered as a cantilever 
rigidly built in at the starting point hi, and all these deformations between hi and ki provide the 
shape of the curved bar. We take its projections in the planes ξ,η and ξ,ζ and. The bars are 
loaded only at their ends, so the projection of a curved bar can be only a cubic curve. 
Therefore, in the procedure, the curve is given as a polynomial of degree three, and the 
coefficients of the terms in the polynomial are determined from the boundary conditions 
according to the fitting at the starting and end points. For displacement coordinates z, y, ϕη, 
ϕζ, the curves generated in this way are shown in Fig. 1. 
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(b) With the help of displacement coordinates and force components arising in the preceding 
load step, displacement coordinates for unit force components at the end of the bar can be 
determined, and with these a new flexibility matrix Fi is produced. The general form of the 
new flexibility matrix is 
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and the elements of F are 
 

ζ

ζζ

η

ηη ϕϕϕϕ

EJ

lll

EA
l

EJ

lll
F

32223222

11
105

1
210
13

35
13

105
1

210
13

35
13

++
++

+−
=

yyzz
 

ζ

ζϕ

EJ

ll
FF

32

1221
30
1

20
7

−−
==

y
 

ζEJ
lF

3

3

22 =  

η

ηϕ

EJ

ll
FF

32

1331
30
1

20
7

+−
==

z
 

ηEJ
lF

3

3

33 =  

ξ

ηϕ

GJ

ll
FF

2

2442
12
1

2
1

+−
==

z
  

ξ

ζϕ

GJ

ll
FF

2

3443
12
1

2
1

+
==

y
  

ξGJ
lF =44  

η

ηϕ

EJ

ll
FF

2

1551
12
1

2
1

−
==

z
  

ηEJ
lFF

2

2

3553 −==    
ηEJ

lF =55  

ζ

ζϕ

EJ

ll
FF

2

1661
12
1

2
1

−−
==

y
  

ζEJ
lFF

2

2

2662 ==    
ζEJ

lF =66  

 
According to the preceding, the transfer matrix B also changes to 
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Since before and after a load step, the coordinate systems ξ,η,ζ attached to the starting point 
of the bar are not identical to each other, a basis transformation (Rózsa, 1974) should be 
applied. 
(c) In the different load steps, the commands for the generation of matrices F and B are 
unchanged, but in an actual step they must apply the values of u, s obtained in the preceding 
step. 
 
3.5 CRITICAL STATES RECOGNIZABLE IN THE SMALL DISPLACEMENT CHANGES OF STATE 
Using small displacement theory, Timoshenko and Gere (1961) have called the compressive 
force on an elastic crooked bar critical, if that force results in infinite deflection of the bar. 
Analogously to this asymptotic definition, we call the load parameter globally critical if the 
load causes infinite displacements of the elastic structure (with bars crooked under the 
increasing load). In case of plasticity is taken into account, we consider a state to be "locally 
critical" (not in the sense of the theory of stability), if in one (or more) bar(s), a plastic hinge 
appears, and that (those) bar(s) cannot be loaded more. In the procedure, such a state is 
modeled that the forces transferred from the bar to the node are considered approximately 
constant, but the submatrices corresponding to such bar(s) are removed from matrix K. 

Then the procedure is continued with the modified matrix K, according to Subsection 3.4. 
 
 
4. CONCLUSIONS 
 
Using the data of a simple double-layer pin-jointed space grid analysed by Szabó and Tarnai 
(1997), we executed a pilot numerical investigation of the same grid but with rigid nodes, for 
one-parameter load such that only the nodes of the upper layer were loaded. The main 
conclusions are as follows. 
(a) It is useful to increase significantly the stiffness of the supporting bars along the boundary 
in order to avoid the possibility that the decrease in the local load carrying capacity starts at 
these bars. 
(b) The maximum stress reached the yield limit first in the same bars as in which, in the pin-
jointed structure, the normal force first reached the critical value. However, the load level for 
the first yield in the rigidly jointed structure was 2.6 times higher than that for first buckling 
in the pin-jointed structure.   
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APPENDIX 
 
To illustrate the relationship between the systems of equations (1) and (2) we show a simple 
structure (Fig. 2). To each of the bars denoted by 1 to 8 there corresponds a pair of 
equilibrium equations 
 0=+•• hiiii qsBT  
 0=+•− kiii qsT  
from which the system of equilibrium equations of the structure in Fig. 2 is composed: 
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