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ABSTRACT 
The paper discusses the validity of the constitutive equations, previously proposed by 
the present authors, for the visco-elasto-plastic behaviors of fabric membranes by 
comparing the simulated behaviors with the experimental results recently performed 
also by the present authors. The constitutive equations are formulated based on Fabric 
Lattice Model where important material elements in the fabric material are replaced 
into intrinsic bar elements with time dependent behaviors as well as material 
non-linearities for which material constants are assumed to be as much compatible 
with measured results in experiments. The experiments are performed under two 
conditions; one is the relaxation test under a constant bi-axial strains with initial 
bi-axial tensions and the other one is the cyclic test under re-tension by five times after 
each relaxation in each re-tensioning process. The experimental results are compared 
with the simulated behaviors and the comparison shows a fair agreement.  
 
1. Introduction 
The stress-strain relationships of Poly-Tetra-Fluoro-Ethylene coated (abbreviated as 
PTFE-coated) glass fiber fabric are of high non-linearity accompanied by viscosity. 
Therefore, initial tensions of such membrane structures are known to decrease with 
years passing. The loss of initial tensions is mainly due to relaxation. In actual works in 
site, several hours or days are spent in the process for introducing initial tensions. 
During the process for initial tensioning, re-tensioning is much effective and works 
well against relaxation. However the initial tensions will still release to some extent 
after several years. The studies on the phenomenon of relaxation have been performed, 
especially by Nishikawa et al.[1] and Minami et al.[2]. Also, the present authors have 
recently performed experiments to know the effects of re-tensioning against the stress 
release after long periods. The simulated behaviors based on Fabric Lattice 
Model[3,4,5] to be compared with the results of experiments are based the constitutive 
equations including material non-linearities and viscosity. The viscosity is formulated 
by using a Voigt model with six-parameter for each bar element of which constants are 
characterized to match experimental results. The previous simulation based on 
four-parameter Voigt model [5,6] could trace the behaviors of relaxation only during 
four weeks, accordingly, the present study aims at a more precise simulation effective 
for the duration of years. 
 



2. Fabric Lattice Model 
 
The present study is based on the Fabric Lattice Model[3] shown in Fig.1, originally 
proposed for static simulation in the previous research[4], for representing the 
behaviors of the PTFE-coated glass fiber fabric to consider the material non-linearities 
and viscosity. A brief description is reviewed for simple explanation. 
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The trapezoidal model shown in Fig. 1 is adopted for representing the fabric 
membranes. The part brimmed by 4321 EEEE −−−  in Fig. 2 is a separated portion 
from a membrane sheet and is transformed to the trapezoidal form, called here Fabric 
Lattice Model, composed of many truss bars as given in Fig. 1. In the model, (1) one 
warp is replaced by two rows of straight members, A, AA and A and one weft is also 
replaced by another rows of members, B, BB and B. The members for warps and wefts 
are assumed to be active only against tension because the yarns remain still bent at the 
beginning of loading and accordingly they seem not to be active against compression 
even at low stress level. (2) Coating materials are replaced by three parts. (2-1) In the 
first way, coatings covering front and back surfaces are represented by the parallel 
truss elements, C in the warp direction and D in the weft direction, and by the diagonal 
members, E and F. These members are assumed to be active against both of tension 
and compression, because the coating materials presumably work under low stress 
while warps and wefts remain almost inactive under low stresses. (2-2) In the second 
way, the coating permeated into and mingled by yarns in the middle of thickness is 
replaced by a sheet element IR . This element is assumed to work only against shear 
deformation since the element is separated by yarns from one another. (2-3) In the third 
way, the coating materials pushed by warps and wefts are replaced by four vertical 
struts, V, which are assumed to act against compression after some amount of 
looseness is diminished. The hysteresis rules for the members in the fabric lattice 
model under static loading are omitted here and referred to the details in the previous 
study [4,5,7]. 
 
2.2 Formulation of Stress-Strain Relationships for Members with Viscosity 
For the viscous behavior, six-parameter model illustrated in Fig. 3 is applied to each 
member for the fabric lattice model. The six-parameter model is composed of a 
Maxwell element g and a Voigt element i. The parameters gE  and iE  are the 
extensional stiffnesses of the Maxwell and the Voigt elements, respectively. gC  and 



iC  are the compliances. The parameters gη  and iη  are the viscous coefficients.  
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Figure 3 Six-parameter Voigt model 

 
Among these parameters the following equations hold. 
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where gT  and iT  are the relaxation time and the retardation time. 

Based on an assumption that the static strains and the viscous strains are 
independent of each other, the total incremental strain εΔ  for the element in Fig. 3 is 
represented by the sum of the following three strains of 1gεΔ , 2gεΔ  and iεΔ .  
 

 ∑Δ+Δ+Δ=Δ
2

21
i

igg εεεε   (2) 

 
where 
 
 1gεΔ : elasto-plastic incremental strain of Maxwell element 
 2gεΔ : viscous incremental strain of Maxwell element 
 iεΔ : visco-elasto-plastic incremental strain of Voigt element 
 
The three incremental strains can be obtained as Eq. (5) by assuming that the applied 
stress σ  varies linearly from )( jtσ  to )( 1+jtσ  during the time increment tΔ  from 

jt  to 1+jt .  
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Substitution of Eq.(3) into Eq.(2) gives the expression for the stress-strain relationship 
between σΔ  and εΔ , leading to the following, 
 
 fET +Δ⋅=Δ εσ  (6) 
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where TE  and f  are the tangent stiffness and residual stress partly due to static and 
partly due to viscous characteristics. 
 
3. Derivation of Constitutive Equations for the Fabric Lattice Model 
 
3.1 Deformations 
The constitutive equations for the fabric lattice model are derived on the basis of the 
constitutive equation for each member in the model. First, the geometries are defined 
for the element 4321 EEEE −−− . The size is 0a  by 0b , and the length and sectional 
area of the member with a subscript K  are denoted by K0l  and KA0 , respectively. 
Second, the geometries are necessary to be defined for the deformed element. The size 
changes to a  by b  due to the strains in the warp and weft directions as well as due 
to the angle distortion by the shear strain. These three strains are denoted by ξε , ηε  
and γ , where ξ  and η  are a set of coordinates in the warp and weft directions. The 
stresses due to the strains of ξε , ηε  and γ  are defined by ξN , ηN  and ξηN in 
this order. Third, the strains induce the strains in each member in the model and the 
strain of the member with a subscript K  is described by Kε . The strain Kε  can be 
expressed by using the geometrical relationship between the strains of ξε , ηε  and 
γ and the crimp interchanges in the warp and weft directions, however the details and 
derivation for the relationships are referred to the study[4].  
 
 



3.2 Incremental Stresses Strain Relationships for Members 
For the formulation of incremental stress strain relationships, the incremental strains 
are first defined as ξεΔ , ηεΔ  and γΔ  for the trapezoidal fabric lattice element. The 
increments change the member length of each member with a subscript K  from Kl  
to Kl . Accordingly the incremental strain of each member is given as follows. 
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The stress Kσ  of the member after the strain increments can be expressed by using 
the tangent stiffness TKE  on the basis of Eq. (6). 
 
 )( KKKTKK fE ++Δ⋅= σεσ  (9)  
 
where Kf  is the stress due to the strain of Kε  and Kf  is the stress increase due to 
the viscosity.  
In the same way the shear stress S  for the sheet element IR  can be defined as 
follows. 
 
 )( ST fSkS ++Δ⋅= γ  (10)  
 
where Tk  is the tangent shear stiffness of the shear element and Sf  is the stress 
increase due to viscosity. 
 
3.2 Constitutive equations for the fabric lattice model 
The virtual strain energy stored in the trapezoidal element is equal to the sum of the 
virtual strain energy stored in each member. Accordingly, the following equation holds. 
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The above equation provides the incremental constitutive equation for the fabric lattice 
model with a consideration of the effects of viscosity as follows. 
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where ξN , ηN  and ξηN  are the stresses due to the strains of ξε , ηε  and γ , the 
three terms of ξF , ηF  and ξηF  are the increase due to viscosity, and the three terms 

of ξN , ηN  and ξηN  are the stresses after the increments in strains occur. And the 
matrix ][D  relates the incremental strains with the stresses after the increments in 
strains. However, their derivation process is referred to the study[4] and the details are 
omitted here. 
 
4. Experiments of Fabric Membrane under Stress Relaxation 
 
4.1 Methods of experiment 
Two types of experiments are performed. One is a pure relaxation test where the 
bi-axial strains are kept constant during the total time for experiments, without 
re-tensioning, to know the stress relaxation. The other is an experiment in which 
re-tensioning is applied several times at the beginning. The situation of re-tensioning is 
shown in Fig. 6, where bi-axial stresses are raised up after some relaxation of stresses. 
The second test aims to know whether the re-tensioning works effectively against 
relaxation. The size of tested pieces is cm40  by cm40  in Fig.4 and bi-axial stresses 
were introduced without shear stress. The temperature in the testing room varied from 
5.7 to 26.4 degrees centigrade during the test.  
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Figure 4 Experimental piece 

 
In case of pure relaxation test, initial stresses of N/cm  NN 0.4900 == ηξ  

were applied to the tested piece which was left under constant strains for one week. ξ  
and η  mean the warp and weft directions respectively. In the re-tensioning test, the 
tested piece was at first applied by the initial stresses of N/cm  NN 0.4900 == ηξ , and 
was then followed by re-tensioning to the original initial stresses by four times after 
each six hours. 
 
4.2 Experimental results 
The results are illustrated in Figs. 5 and 6, respectively for the pure relaxation and the 
re-tensioning relaxation. In the pure relaxation test, the stresses decreased to 24.5 and 
19.6 cmkgf /  after one week, corresponding to 50 and 40% of the applied initial 



stresses. The stress relaxation is almost same as the experiment previously performed 
by Minami et al.[8]. In the re-tensioning relaxation test, the stresses decreased to 41.2 
and 32.3 cmN /  after the same duration of one week, corresponding to 84 and 66 % 
of the initially applied stresses. The re-tensioning is confirmed much effective to 
reduce the loss of initial stresses. 
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Figure 5 The results of once-loading test 
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Figure 6 The results of fifth-loading test 

 
5. Numerical Simulation based on Fabric Lattice Model 
 
By using the constitutive equations based on the present Fabric Lattice Model, 
numerical simulations are performed. The parameters for static behaviors are the ones 
identified in the previous work[4]. The parameters for viscous behaviors are first 
assumed and then revised by comparing the test results with the simulated results. The 
comparisons are shown in Figs. 5 and 6. Although there exit some amount of 
discrepancies between the simulation and the experiments, it is confirmed that a good 
agreement is obtained. 
 
 
 
 
 



6. Conclusion 
 
Two types of relaxation tests are performed to investigate whether the re-tensioning 
process at the step to introduce initial stresses is effective to present the loss of stresses 
due to relaxation. The initial stresses in case of pure relaxation decreased to about 50 
and 40% of the original values after one week, however, in case of re-tensioning 
process the stresses decreased to 84 and 66% of the initially applied stresses. 
Accordingly, the re-tensioning is proved much effective to reduce the loss of initial 
stresses. 
Also, the simulated results for relaxation are given based on Fabric Lattice Model and 
are compared with the experimental ones. The comparison proves a good agreement 
between the experiments and the analysis. 
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