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The Roots of AI in Design

Design Research (1962)

Application of scientific methods and 
knowledge to solve design problems, including 
architectural, engineering, and industrial design 
ones (Jones, 1962)

CAD Research (1963)

“Using the computer in a much
more direct and powerful way in the chain of 
events that begins with the original concept as 
envisioned by the design engineer and 
culminates in the production of the finished 
device” (Coons, 1963)

AI in design Research (1991)

Twofold aim. Producing a better 
understanding of design. Producing useful 
tools to aid human designers, and in some 
areas to automate various aspects of the 
design process (Gero, 1991)

This presentation aims to show you at least three ways 
to simulate mechanisms of a human designer’s cognition 
to create artificial forms of intelligence, AIs with which 
we can interface and collaborate. However, I’d like to 
clarify that when we put together these slides, we 
thought that the overarching purpose of the 
presentation should have also been to provide you with 
an overview of the history of AI in the specific field of 
design, and how the concepts around AI in design have 
evolved and mutated over the decades.
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Exploring the past to better understand the present is 
always a surprisingly good way to discover that what we 
aim to achieve nowadays was already theorised 50 or 
more years ago, generally anticipating the technological 
developments that actually allowed us to apply the 
theory.

On this slide, you can see three key moments in the 
development of AI in Design. On the left, the 1962 
conference on design methods was one of the first 
attempts to conduct research in the design disciplines 
following a scientific approach: academic working on 
design methods were among the first to apply decision-
making and problem-solving strategies to investigate the 
solution of design problems. The same academics were 
also the first to suggest that computers could have 
facilitated the formalisation, and therefore the 
resolution, of such problems.

Computer-Aided Design or CAD Research emerged as a 
field of study in the same years. Here the focus was on 
the development of human-machine interfaces to 
support a variety of design processes and workflows, 
from conceptual sketching to design production. I think 
we can all agree on considering SketchPAD, developed in 
1963 at the MIT, as the first Graphic User Interface and 
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the first CAD software, from which all current programs 
derive.

On the right, you can see AI appearing in the title of 
these 1991 conference proceedings, and the reason for 
discussing AI in the context of CAD Research is that 
academics working in this stream started from the 
hypothesis that computers should possess some 
mechanisms of human cognition in order to act as 
design assistants. This interpretation of Computer-Aided 
Design is probably the most sophisticated one as 
research in this field aimed at better understanding 
design and design processes to create tools that could 
automate the resolution of design tasks.
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1960s

1960s

1990s

2020s

AI in Design: Timeline

LITERATURE REVIEW

To summarise, the complex and intricate timeline of AI research in design can be seen 
as the convergence between the CAD research and the design research of the 60s, 
which evolved into a stream renamed as Artificial Intelligence in Design in the 90s. 
Before this period, AI was primarily seen as a way to automate tasks, and didn’t 
involve understanding and modelling the designer’s cognition, as opposed to classical 
optimisation, which models design mechanisms. We’ll come back to that in a few 
slides.

Nowadays, when we use the term Artificial Intelligence, we generally refer to Artificial 
Neural Networks and Deep Learning, therefore to systems that are based on 
“learning”.
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What is Intelligence?

Intelligence Reasoning

Learning

Perception

Problem
Solving

Intelligence measures an agent’s ability to achieve 
goals in a wide range of environments
(Legg and Hutter, 2007)

• The notion of ‘agent’ implies that intelligence is an 
emerging property of any system – biological or artificial 
– capable of ‘achieving goals’

• The last part of the definition concerns the universality of 
intelligence: an intelligent agent needs to demonstrate its 
ability to solve a large variety of problems.

LITERATURE REVIEW

The term “learning” seems to imply a certain degree of 
“intelligence”, and “intelligence” itself seems to imply a 
certain degree of “creativity”. Before we proceed any 
further, it’s worth highlighting that some researchers 
developed entire literature reviews on these aspects. For 
example, in 2007, Legg and Hutter analysed 70 
definitions of the term intelligence, and they came up 
with their own, we could say, general and definitive 
definition. In their opinion, intelligence measures an 
agent’s ability to achieve goals in a wide range of 
environments. This ability is expressed through a set of 
skills, on the slide illustrated with the blue circles –
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learning, reasoning, problem-solving and perception.
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Not only automation: the quest for creativity

LITERATURE REVIEW

Relationship between known designs, innovative designs, 
and creative designs based on different extensions of the 
solution space (Rosenman and Gero, 1993)

But why would we want to develop an “intelligent” CAD 
system? We want computers to be less passive as part of 
the design process; we want them to be able to support 
a designer’s creativity and imagination. On this topic, a 
key researcher was, and still is, John Gero, who used to 
lead the Design Computing Unit in Sydney for many 
years. In his opinion, “creativity” could be defined as the 
ability to move beyond the design space of known 
solutions, or in other words, towards a broader domain,
which he called the universal domain.

This slide shows a simple example of what we mean by 
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the space of known solutions, and even innovative 
solutions within the same solution domain. It’s a 
simplified example of the design evolution of mobile 
phones. Now, without aiming to do a comprehensive 
review of mobile phone design evolution, we know that, 
up to a certain point, all designs included a keyboard and 
a screen. The most innovative designs were based on 
foldable phones, larger screens or complete keyboards, 
but the real creative solution only arose from a big 
conceptual jump, from moving beyond the space of 
known solutions: we don’t need the keyboard, we don’t 
need buttons, we don’t need a separate screen. The 
phone is the screen, which is a touch device, and such a 
device does everything else, including being a keyboard. 
From 2007 onwards, we could argue that all phone 
designs have been developed within this “new” space of 
known solutions.

Going back to John Gero’s work, this conceptual 
formalisation of the research on AI in design, allowed his 
group to imagine computational processes that could 
simulate creativity. We won’t get into those, but there 
are four: combination, mutation, analogy and first 
principles.
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Modelling a design mechanism Modelling the designer’s cognition

Two approaches to AI in Design Research

LITERATURE REVIEW
LITERATURE REVIEW

Engineering design: Surrogate Models

Architectural design: Generative Models

Approximating FEM analysis  (Ćojbašić et al., 2014)
Architectural plans generation (Chaillou, 2019)

To complete the contextualisation of our research on AI 
in Design, we’d like to close this initial set of slides by 
distinguishing between two main design approaches that 
are currently followed to implement AI models in design 
applications. On the left, you can see evolutionary 
computing aimed at modelling a specific design 
mechanism. The example you see on the slide is a 
topology optimisation application, where the goal is to 
reduce the use of material starting from specific 
boundary conditions, and therefore, from a well-defined 
family of possible design solutions. If we follow the 
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original definition of Artificial Intelligence and the sub-
group of Machine Learning strategies, topology 
optimisation as well as Genetic Algorithms are part of AI 
research in Design. On the right, you can see the 
opposite approach, which involves modelling the 
designer’s cognition, therefore some aspects of human 
intelligence, rather than a specific design mechanism.

Common examples of this approach include surrogate 
models, for example, in which structural solutions are 
designed by an AI without performing actual 
calculations, or where apartment plans are designed by 
an AI starting from a given perimeter. Both strategies are 
based on a certain experience acquired by the model in 
order to design.

An important difference between the approach on the 
left versus the approach on the right is the way in which 
we, human designers, can interact with these systems. 
While we communicate with optimisation algorithms 
mainly through the definition of design variables, we can 
interact with the models on the right through visual 
outputs or natural language.
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Expertise Playfulness Analogical Reasoning

Clustering and combining information 
related to a single knowledge domain

Interacting with objects with no 
boundaries

Transferring information between multiple 
knowledge domains

Simulating the designer’s acquired 
experience Simulating how a child learns by playing

Simulating how designers find inspiration 
from other fields

Exploration of multiple configurations of
hanging chain models

Playing with Froebel blocks Construction of analogies between biology and 
architecture

Simulating three learning mechanisms

METHODS

And this is the core of Gabriele’s thesis: three 
applications that simulate different human learning 
mechanisms with AI. Design expertise, which we apply 
on a regular basis by relying on previous knowledge and 
design precedents. Playfulness, which is a principle that 
goes back to the hopefully happy years of our childhood, 
and is simulated with AI through Reinforcement 
Learning. The last mechanism is analogical reasoning, 
which is also the most ambitious for us, and involves 
transferring information between different but relatable 
knowledge domain. Many architects and engineers use 
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this approach on a regular basis, and before passing the 
ball to Gabriele, I’ll just mention Frei Otto as an obvious 
example. The stage is your Gabriele, to discuss the AI 
applications.
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Expertise
Learning from a dataset of precedents

Engel Heino, Structure Systems/Tragsysteme, 1968

I’ll start by introducing The first learning mechanisms on Expertise, which is here 
intended as the ability to extract meaningful design features from studying and 
analysing design precedents. 

In the context of structural design, expertise allows an engineer to reimagine known 
structural typologies by recombining their knowledge of notable projects. In this 
slide, for example,  you can see several variations of structures made of hypars that 
were elaborated by Engel Heino starting from projects by felix candela. 
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Generating Design Spaces with Variational Autoencoders 

METHODS

TRAINING

GENERATION

The process of learning from design precedents can be simulated by an AI technique 
named Variational autoendoer. This model features two components. The encoder 
learns to compress the information of a dataset of precedents into a low dimensional 
space (latent space), where similar input data are close to one another. The decoder 
learns to reconstruct the original input from its encoded representation. 

Once trained, the latent space can be sampled to generate new data that recombine 
the features of the analysied design precedents.
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Construction of an artificial dataset of shell structures

Design variables

Funicular shape 
generation

Depth map 
construction

Artificial dataset

METHODS

Let’s begin with the first application, in which the AI model was trained using a 
dataset of shell structures obtained with an ordinary parametric model.

This animation shows how the dataset was constructed through the parametric 
model. First, the algorithm generates a random combination of variables which 
control the boundary curves of the shell. These curves are then used as input for the 
dynamic relaxation algorithm to construct a 3D model of a funicular geometry. Finally, 
the 3D model is converted into a depth map and the image saved on the local hard 
drive.

We used this process to generate 800 3d models. the dataset included three 
categories of shell structures: the first one with 2 openings or free edges, the second 
one with 3 openings, and the third one with 4 openings. 
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Training a VAE using the artificial dataset

Every point corresponds to a 
design solution and is 

represented by a vector of 32 
values or variables

Extracts design variables Generates a parametric model

METHODS

After constructing the dataset we trained the Variation Autoencoder. Training works 
this way: firstly, we fed the model with random data samples taken from the dataset, 
which are shown on the left. Then, we let the model perform two different tasks: 
number 1, compress the input data, that means extracting ‘design variables’, those 
shown in the graph at the center of the diagram, and number 2, decompress the 
‘design variables’ to reconstruct the original input, which is shown on the right. Over 
several iterations, the Variational autoencoder learned to extract increasingly more 
useful variables and to reuse them to reconstruct increasingly finer details of the 
input data. 

The animation at the centre illustrates the position of the combinations of variables 
describing all the 800 depth maps populating the dataset during each training 
iteration. Points colour represents the category of the 3D model represented by the 
depth map, that is shells with two, three or four openings. It can be seen that 
although the model has no information about these categories, it successfully learnt 
meaningful variables which embed information about the number of openings. This is 
demonstrated by the formation of three clusters in the latent space. An additional 
property of this space is that it can be sampled to generate new data.
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?

Exploration of the AI-generated design space

METHODS

This slide shows an implementation of the trained model for the generation of new 
designs. On the left you can see a representation of the latent space with four 
numbers, which identify the position of 4 designs taken from the dataset. The 
variables describing these designs are linearly interpolated to create new 
combinations of variables, which are shown as grey dots along linear paths. These 
new combinations of variables are then decompressed into new designs, shown on 
the right, which are not part of the initial dataset.
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Variational Autoencoder Implementation

AI-generated design space

Training a VAE using a dataset of historical structures

METHODS

Having confirmed the ability of AI to extract design variables from a dataset of forms 
and recombine these variables to generate new designs, we wanted to see if AI could 
also be trained using a dataset of real projects. We developed a dataset of 40 shell 
and tensile structures designed by famous architects and engineers. We produced a 
3D model for each project and converted it into a depth map to train the AI model.

After training we asked the model to interpolate between 4 different designs, thus 
generating hybrid structural forms that recombine the features characterising the 
projects that populated the dataset. This task was more challenging than the previous 
application, as each one of the four projects represent a unique structural typology. 
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From depth maps to 3D models

METHODS

AI-generated design space

This slide shows an animation of the interpolation process in 3D. The animation was 
obtained by converting the depth maps into point clouds, demonstrating that depth 
maps embed all the information necessary to reconstruct 3D models and are 
therefore a suitable data format for analysing and generating shell and tensile 
structures with standard AI model architectures.
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Recursive interpretation of an input footprint

METHODS

The AI model can also interpret inputs recursively, which allow generating multiple 
variations of a design form. This slide shows that starting from a single footprint the 
AI model could generate a series of 3D forms that the designer can analyse for 
further elaborations. The higher the number of interpretation the closer the 
resemblance between the new forms and those that populate the dataset.

In some cases we observed that the model could come up with solutions that are 
very different from the projects populating the dataset. For example, The solutions 
highlighted with a red circle show a shell with a large cantilever and a shell with a 
weavy opening. 
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Interacting with AI through commercial CAD software

METHODS

The AI model was then integrated within CAD software, which allowed to perform the 
two tasks of generation and interpretation more interactively. The slide show the 
three nodes managing the exchange of information between the designer and the AI 
model, whereby a input sketch is transformed into a 3D point cloud in real-time.
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METHODS

We tested the applicability of this interface to address real world design problems 
through a benchmark involving redesigning iconinc buildings, which were not 
included in the training dataset. Here we asked the model to produce an alternative 
design for the Hyppo House shell. The model was fed with a 2D image representing 
the building footprint and asked to produce several variations through recursive 
interpretation. The final design, shown on the right, is a shell form with multiple 
openings and supports. It represents an alternative option to the original design 
which is characterised instead by a continuous support along the edge.
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Playfulness
Reinforcement Learning

Students from the Johns Hopkins University testing a spaghetti bridge. Image credits: Scott Calvert

Let’s now introduce the second learning mechanisms, Playfulness, which involves 
learning through a process of free exploration. 

In design, playfulness can be related to pedagogical activities like model-making, 
though which student learn by doing. On the left you see a simple reciproclar
structures assembled from matches. To produce a model of this kind students only 
need to know the basic principles of reciprocal structure. Then they can explore and 
test different patterns by manipulating objects with their hands. 

On the right you see another example in which students test scale models of bridges 
assembled from spaghetti. This is an exercise that stimulate a student’s creativity, and
allow them to learn the relationship between form and performance in bridge design.
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Artificial Neural Network
(Policy)

Reinforcement Learning

Solving an MDP with AI (Artificial Neural Networks)

Agent

Environment

Action

Task: stacking blocks to build a tower
Goal: build the tallest tower

To understand how a learning mechanism based on playfulness can be simulated with 
AI, let’s consider a simple scenario in which a kid learns to build a tower by stacking 
blocks vertically.
Building the tallest tower can be considered the goal of the playing activity, during 
which the kid interacts with the environment by observing, picking and stacking 
blocks.

“This process is sequential, which means that the kid will have to perform multiple 
actions before completing the tasks. Moreover, these actions must be performed in 
the right order to accomplish the goal.

In the first iterations the kid will not know how the balance the blocks, which would 
make the tower collapse. After several attempts, however he will learn to pick the 
right block and position it in a way that a stable tower is produced. He will learn to do 
so through a process of reinforcement, that is by repeating those actions that lead to 
the achievement of a reward (in this case achieving a tall tower) and discarding the 
actions that made the tower collapse.
”
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This sequential process can be modelled with AI, using a Reinforcement Learning 
approach. The problem in this case is learning a function that maps observations of 
an environment into actions, which are performed to accomplish a goal. The learning 
process does not rely on external datasets, but on the experience accumulated 
during training. In other words, the model learns from its own mistakes, similarly to a 
kid.
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Application: learning to design a bridge structure

Alternative structural schemes developed by Jörg Schlaich 
for the Obere Arben crossing. 
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Conceptual sketches for The Shard (Renzo Piano, 2012)
Section studies for the Auditorio de Tenerife (Santiago Calatrava, 2003) 

Application: learning to design a bridge structure

METHODS

Updating the action space:
drawing by executing 2D CAD commands
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METHODS
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Using the trained agent: comparing the generated designs in a performance space

METHODS
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Learning from conditional exploration

Chilton J., Heinz Isler, 2000

Analogical Reasoning

We are now at the third and last application for today’s 
presentation.

We define analogical reasoning as the “ability to learn 
through a process of exploration that is conditioned by 
non-architectural or non-design-related forms. For 
example, engineer Heinz Isler is well known for his 
pneumatic form-finding method that was developed to 
design thin concrete shells. The physics behind the 
shape of a pillow clearly inspired the development of 
this method, in which the analogy is not purely formal, 
but goes deep into the structural behaviour of an 
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inflated pillow.
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UAE Pavilion at Dubai Expo (Calatrava, 2020)

Analogical reasoning in architecture: bio-informed design

L’Hemisfèric (Calatrava, 1998) Notre Dame du Haut (Le Corbusier, 1954)

METHODS

This point is particularly important when we look at bio-
inspired designs. In most cases, the analogy between 
biology and architecture is purely formal. It’s only in rare 
cases that a biological model or system is used as the 
source of inspiration but not necessarily its original 
shape.

Let’s have a look more in detail at the project on the 
right, Ronchamp by Le Corbusier.
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Reproducing Le Corbusier’s visual analogy with DALL-E 2

Prompt:
Replace roof with 
a crab shell

METHODS

If we use generative AI, for example Dall-E, to reproduce 
the design of Ronchamp’s roof only, we end up having a 
fairly literal analogy. The AI didn’t design a crab shell 
shaped roof, it simply replaced the original roofing 
system with crab shells!
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Reproducing Le Corbusier’s visual analogy with DALL-E 2

Prompt:
Replace roof with 
a seashell

METHODS

Changing the textual prompt to seashell provided us 
with these results. Even though the AI did redesign the 
roof effectively this time, by better blending the visual 
features of Le Corbusier’s design with biological forms, 
from a design point of view, the images illustrate a 
biomorphic approach rather than a biologically informed 
approach to design.
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Choice and analysis Transformation Implementation

Visual Similarity

Technological 
requirements

Structural 
requirements

(Aalborg Bio-inspired Design Method)

Image credits: McCloud (1994)

Visual abstraction in 
the arts

Visual abstraction in design

METHODS

To understand why Dall-E came up with these results, we 
need to look into the principles of visual abstraction, 
which is what Le Corbusier used. Visual abstraction is a 
process that reduces the complexity of a visual 
representation to enhance those features that are 
semantically relevant.

While in visual arts this process is primarily visual, as the 
name would suggest, in architectural design, performing 
visual abstraction requires one to develop a proposition 
from visual features, but also from structural, functional 
and other technical requirements of the biological 
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source.
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Synthesising Programs for Images using Adversarial Reinforced Learning (SPIRAL)

Ganin et al. (DeepMind, 2018)

Ganin et al. used this approach to train an AI model named “Synthesising Programs for Images 
using Reinforced Adversarial Learning” – SPIRAL – to generate visual abstractions of 2D images.

In SPIRAL, humans do not supply the agent with information about human drawings, and the 
agent must develop a strategy by trial and error.

Computer scientists achieved these objectives for 2D images applications by 
integrating an AI agent with a GAN discriminator. Ganin et al. (2018) used this 
approach to train an AI model named “Synthesising Programs for Images using 
Reinforced Adversarial Learning” – SPIRAL – to generate visual abstractions of 2D 
images. This application tasked the AI agent with learning a set of drawing actions to 
reproduce the key features of an image dataset within a drawing software.

Unlike previous applications of AI for inverse graphics (see section “Artificial 
Intelligence for Inverse Graphics”), in SPIRAL, humans do not supply the agent with 
information about human drawings, and the agent must develop a strategy by trial 
and error. An additional component – a GAN discriminator – produces a similarity 
metric that informs the agent about the quality of the synthesised images.

The SPIRAL model and its upgrade SPIRAL++

To date, studies applied SPIRAL and SPIRAL++ to generate human faces, handwritten 
digits, and images representing 3D scenes. There are no current implementations of 
SPIRAL for 3D data to our knowledge. Despite that, we selected this SPIRAL model for 
further development because, unlike GANs, it can autonomously decide the number
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and characteristics of the features to reproduce in a synthetic visual abstraction. 
Furthermore, unlike current applications for inverse graphics, it does not require a 
dataset of drawing instructions and supports fine control of the abstraction process 
through the specification of constraints. Later in the article, we describe how our 
version of SPIRAL can extract visual features from a 3D dataset of tree forms and 
synthesise visual abstractions of such forms.
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Designing artificial replacements of natural habitats

Natural habitat
dead old tree

Human-designed artificial habitat
Utility pole

Mirra G., A. Holland, S. Roudavski, J. S. Wijnands and A. Pugnale, "An Artificial Intelligence Agent That Synthesises Visual Abstractions of Natural Forms 
to Support the Design of Human-Made Habitat Structures", Frontiers in Ecology and Evolution, 2022. 

Our application uses the Markov Decision Process to 
design artificial replacements for dead old trees, which 
would obviously require us to wait for decades if we 
wanted to replace them with other trees. This 
application was developed with other colleagues, 
Stanislav Roudavski and Alexander Holland, and our aim 
was to abstract those visual features of natural trees that 
birds find appealing in order to select their nesting place. 
The goal was to come up with something better than the 
utility pole that you can see on the right on this slide, 
which is the solution for deforested areas at the 
moment.
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Through the analysis of literature on AI, we found that there are no models that are 
specifically designed to synthesise visual abstractions in 3D. 

Since many bird species and other living organisms live in large old trees and the 
number of such trees is diminishing, research on the design and construction of 
effective human-made replacements is a significant international priority [1, 2, 3, 4]. 
In 2022, Mirra et al. [1] developed an Artificial Intelligence (AI) agent trained to 
produce line sketches of large old trees to capture and reproduce their characteristic 
features in a simplified form. This AI agent produces visual abstractions of tree 
geometries used to train it, and such abstractions retain features that animals look 
for when choosing nests or perch locations.



Figure 1 illustrates the workflow used by Mirra et al. [1] to generate visual 
abstractions of tree forms. This method involves preparing a 3D dataset of natural 
trees, training an AI agent to extract geometric features from such models and 
producing simplified representations that preserve the visual features of the original 
geometries. The AI model generates these visual abstractions by tracing line 
segments.

The training dataset comprised high-resolution 3D point clouds [2], from which the 
researchers first isolated the most relevant features – the points representing the 
branch geometry – and then clustered and converted them into line segments. This 
data format was translated into a 32x32 voxel representation to suit AI training 
requirements: the goal was to minimise the computational cost of geometry 
processing while preserving essential information about the structural complexity 
and mass distribution of the original trees (Figure 1, on the left). At each iteration of 
reinforcement learning, the AI agent observed samples from the dataset of voxelised
tree forms and attempted to reproduce their geometries by drawing lines within a 3D 
canvas. The AI agent was constrained to use a maximum of 10 lines for each attempt, 
forcing it to generate simplified representations – or visual abstractions – of natural 
trees. Figure 1, on the right, shows 20 visual abstractions generated by the AI agent 
during the last training iterations.



The researchers analysed the performance of these 3D polylines using two metrics –
the Perch Index and the Complexity Index – and discovered that their AI-generated 
forms were more similar to natural canopy structures than the reference human-
designed trees used for the comparison. Moreover, many of the generated solutions 
contained diverse canopy shapes and branch distributions.
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Figure 1 illustrates the workflow used by Mirra et al. [1] to generate visual 
abstractions of tree forms. This method involves preparing a 3D dataset of natural 
trees, training an AI agent to extract geometric features from such models and 
producing simplified representations that preserve the visual features of the original 
geometries. The AI model generates these visual abstractions by tracing line 
segments.

The training dataset comprised high-resolution 3D point clouds [2], from which the 
researchers first isolated the most relevant features – the points representing the 
branch geometry – and then clustered and converted them into line segments. This 
data format was translated into a 32x32 voxel representation to suit AI training 
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processing while preserving essential information about the structural complexity 
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reinforcement learning, the AI agent observed samples from the dataset of voxelised
tree forms and attempted to reproduce their geometries by drawing lines within a 3D 
canvas. The AI agent was constrained to use a maximum of 10 lines for each attempt, 
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trees. Figure 1, on the right, shows 20 visual abstractions generated by the AI agent 
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The researchers analysed the performance of these 3D polylines using two metrics –
the Perch Index and the Complexity Index – and discovered that their AI-generated 
forms were more similar to natural canopy structures than the reference human-
designed trees used for the comparison. Moreover, many of the generated solutions 
contained diverse canopy shapes and branch distributions.
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From visual abstractions to tensegrity configurations

Step A: construct pairs of planes to 
orient the kite modules

The polyline segments are extended 
by distance c, corresponding to half 
the height of the modules located at 
the corner (module b) and the end of 
the polyline (module d). 

Step B: construct the axes of the 
struts that define the kite modules 

Rotate every second pair of planes 
by 90 degrees about their Z-axis. 
Construct the end points of the 
struts along the X-axis of the 
reference planes. 

Step C:  generate a network of cables 

(1) edge lines, defining the sides of 
each kite module; (2) draw lines, 
connecting two consecutive 
modules (3) sling lines, connecting 
and suspending consecutive 
modules.

Step D: add two additional tension 
lines to stabilise the structure and 
anchor it to the ground

Variable s controls the distance 
between the anchoring points.

Automated design strategies for tensegrity structures based on modules with three 
or more compressed elements are usually designed from a starting reference surface 
or polyhedric geometry [10, 11]. Instead of using a three-strut module, common for 
tensegrity towers, we implemented a simpler quasi-tensegrity structural system 
inspired by Kenneth Snelson’s X-piece sculpture of 1948. Acknowledged as the first 
built tensegrity, this structure consists of two X-shaped compressed elements and 14 
cables in tension. One X module is called a kite. Snelson later described this and other 
tensegrity systems in his 1965 US3169611A patent [12].

This tensegrity configuration facilitated the exploration of stacking modules that 
deviate from the vertical direction of growth. 

Step A consists of constructing pairs of planes to orient the kite modules. The initial 
polyline segments are extended by a fixed distance c, corresponding to half the 
height of the modules located at the corner (module b) and the end of the polyline 
(module d). This step also involves calculating the number of additional plane pairs 
that can be placed along each segment. The variable h determines the spacing 
between the planes, whereas depth d adjusts the relative positioning of consecutive 
plane pairs. For the 2-segment L-shaped polyline shown in Figure 2, this process 
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results in constructing one additional plane pair per segment, corresponding to 
modules a and c.
Step B involves constructing the axes of the struts that define the kite modules. We 
rotate every second pair of planes by 90 degrees about their Z-axis to orient the kites 
correctly. For each module, we then construct the start and end points of the struts 
along the X-axis of the reference planes. We created the variable w to control the 
distance between these points and define the width of kite modules.
Step C generates a network of lines that represent cables. We construct three types 
of tension lines, following Snelson’s kite design: (1) edge lines, defining the sides of 
each kite module; (2) draw lines, connecting two consecutive modules and pulling 
them towards each other; (3) sling lines, also connecting and suspending consecutive 
modules.
Step D adds two additional tension lines to stabilise the structure and anchor it to the 
ground. Variable s controls the distance between the anchoring points.
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Design options

This procedure allowed us to rapidly create 3D models of tensegrity systems from the 
20 AI-generated visual abstractions defined in Mirra et al. [1]. We selected visual 
abstractions prioritising single trunk and branch-like structures as main features. We 
also selected AI-generated polylines with long horizontal lines, as these 
configurations are more suitable for perching.
Using these criteria, we shortlisted solutions 6, 7, 8, 15 and 17, as shown in Figure 3. 
We selected solution 8 for the pavilion design because it consists of several near-
horizontal kite elements.
While our pavilion design is a prototype of an artificial habitat structure, it should also 
be seen as a creative output. Other tensegrity topologies or structural systems could 
work equally well. However, the proposed design is a significant advancement over 
existing structures, such as utility poles. 
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Final design
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