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Dual skinned membranes borrow from the ‘double glazing’ effect by introducing an air gap / barrier 
trapped between 2 layers of lightweight membrane. The gap serves as an insulator between the outer 
heat source and the cooler interior, reducing the rate of heat transference between the two skins. 

Thermal gains in dual skinned structures are approximately 25% of that gained by a single skinned 
design in the same circumstances. 

In the following figure the thermal gain calculations are based upon the following criteria 

• Solar radiation 868 W/m2 
• Ext. Temp 25° C - Int. Temp 20° C 
• Midsummer (June) 
• 12.00 (Noon) 
• Latitude 48 degrees 52' N. (Paris) 

 

       Thermal gain 133W/m2           Thermal gain 40W/m2  

Both of these methods reduce thermal gain within a structure from radiant solar energy by the use of a 
screening or an insulation effect, however another method exists to reduce thermal gain and that is to 
lower the emissivity of the material from which a structure is designed. 

EMITTANCE AND EMISSIVITY or E 

Emittance is used to describe the ability of a materials surface to absorb and then emit radiant energy. In 
the case of lightweight structures in Australia, the source we are most concerned with is solar energy 
and we are usually seeking to minimise the thermal gain effect. The more energy a material absorbs and 
emits, the higher the thermal gain would be for a structure fabricated in that material. 

Emissivity is the ratio between a materials emittance compared to that of a ‘perfect’ 100% absorbing 
body at the same temperature - it is not measured in units. This perfect absorber of radiant energy 
(would have an emissivity E of 1, conversely a material that perfectly reflected 100% of energy would 
have an emissivity E of 0. 

N.B. Reflection and emittance when added together always add to 1 (at a given wavelength in the 
spectrum). 

In summary, the higher a materials emissivity the more energy is absorbed and then emitted, conversely 
the more reflection the lower the absorbed energy and available energy to re-emit. A material classed as 
Low E (low emittance or low emissivity) is therefore designed to increase the reflection rate and lower 
the materials emittance. 
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LOW E COATINGS 

A range of products with a specially formulated Low E coating have been produced by Ferrari for use in 
both the lightweight structure and Solar protection (blinds and awnings) markets. Low E coatings are 
microscopically thin metallic oxide layers applied to the surface of a material which are normally 
transparent to visible light and opaque to infrared radiation. 

The principal mechanism of heat transfer is the thermal radiation of gained energy from a warm surface 
to a cool surface. By coating a textile with a Low-E material a significant amount of this radiant heat is 
reflected which lowers the total heat gain and the available energy available to emit through the 
material. 

 

TEXTHERM SIMULATION  

To assist Architects and air-conditioning engineers in the design of energy efficient lightweight 
structures, Ferrari have developed a tool called TexTherm to enable the simulation of a variety of fabric 
scenarios under differing conditions. 

Whilst primarily used for temporary or simplistic structures, the tool would need modification for larger 
permanent structure use, however the principals and calculations for emissivity demonstration are 
accurate. 

Complex shapes and structures without walls etc would require a more complex modelling program to 
arrive at a meaningful result. 

 

The following screenshots of the TexTherm tool show 2 differing structure types and the resultant cost 
to maintain a fixed temperature by air-conditioning within the structure. 

The parameters used in this calculation are 

External temperature: 35°C 
Humidity:  65 
City:  Canberra 
Fabric roof surface:  2000 sqm 
Wall surface:  900 
Internal required temperature:  20 
Internal humidity:  65 
Activity:  Exhibition 
Number of people:  200 
 

In the first example the structure has a single skin membrane and in the second example a double 
membrane is simulated. The differing capacities of the air-conditioning units required in each scenario 
and the hourly costs to run them are displayed for each method. 
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