



LEED

- USGBC formed 1993
- Pilot LEED program launched 1998
- Programs are voluntary, consensus-based and market driven
- Promotes whole-building approach by recognizing performance in five key areas:
 - Sustainable site development
 - Water savings
 - Energy efficiency
 - Materials selection
- Indoor environmental quality

LEED-NC v3

Version 3:

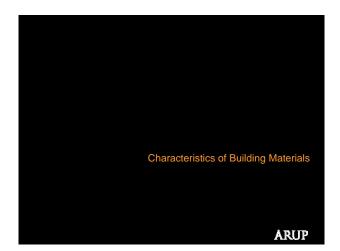
- take advantage of new technologies & advancements in building science
- prioritizing energy efficiency and CO₂ emission reduction
- Key advancements:
 - Harmonization
 - Regionalization
 - Modified credit weightings

LEED NC – Credits				
Sustainable Site	s 26 possible points			
Prerequisite 1	Construction Activity Pollution Prevention			
Credit 1	Site Selection			
🗆 Credit 2 <	Development Density and Community Connectivity			
Credit 3	Brownfield Redevelopment			
Credit 4.1	Alternative Transportation—Public Transportation Access			
Credit 4.2	Alternative Transportation Bicycle Storage and Changing Rooms			
Credit 4.3	Alternative Transportation—Low-Emitting and Fuel-Efficient Vehicles			
Credit 4.4	Alternative Transportation—Parking Capacity			
Credit 5.1	Site Development—Protect or Restore Habitat			
Credit 5.2	Site Development—Maximize Open Space			
Credit 6.1	Stormwater Design—Quantity Control			
Credit 6.2	Stormwater Design—Quality Control			
Credit 7.1	Heat Island Effect—Nonroof			
Credit 7.2	Heat Island Effect—Roof			
Credit 8	Light Pollution Reduction			

LEED NC - Credits

Water Efficiency	10 possible points
☑ Prerequisite 1	Water Use Reduction
Credit 1	Water Efficient Landscaping
Credit 2	Innovative Wastewater Technologies
Credit 3	Water Use Reduction
Energy and Atmo	sphere 35 possible points
☑ Prerequisite 1	Fundamental Commissioning of Building Energy Systems
Prerequisite 2	Minimum Energy Performance
Prerequisite 3	Fundamental Refrigerant Management
🗆 Credit 1 <	Optimize Energy Performance
Credit 2	On-site Renewable Energy
Credit 3	Enhanced Commissioning
Credit 4	Enhanced Refrigerant Management
Credit 5	Measurement and Verification
Credit 6	Green Power

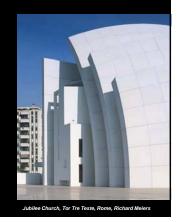
LEED NC - Credits Materials and Resources 14 possible points ☑ Prerequisite 1 Storage and Collection of Recyclables Credit 1.1 Building Reuse-Maintain Existing Walls, Floors and Roof Credit 1.2 Building Reuse-Maintain Existing Interior Nonstructural Elements Credit 2 Construction Waste Management Credit 3 Materials Reuse Credit 4 Recycled Content **Regional Materials** Credit 5 Credit 6 Rapidly Renewable Materials Certified Wood Credit 7

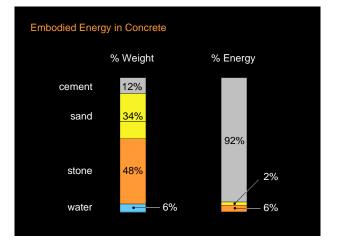

LEED NC - Credits Indoor Environmental Quality 15 possible points Derived Prerequisite 1 Minimum Indoor Air Quality Performance Prerequisite 2 Environmental Tobacco Smoke (ETS) Control Credit 1 Outdoor Air Delivery Monitoring Credit 2 Increased Ventilation Credit 3.1 Construction Indoor Air Quality Management Plan—During Construction Credit 3.2 Construction Indoor Air Quality Management Plan—Before Occupancy Credit 4.1 Low-Emitting Materials—Adhesives and Sealants Credit 4.2 Low-Emitting Materials-Paints and Coatings Credit 4.3 Low-Emitting Materials-Flooring Systems Credit 4.4 Low-Emitting Materials-Composite Wood and Agrifiber Products Credit 5 Indoor Chemical and Pollutant Source Control Credit 6.1 Controllability of Systems-Lighting Credit 6.2 Controllability of Systems-Thermal Comfort Credit 7.1 Thermal Comfort—Design Credit 7.2 Thermal Comfort—Verification Credit 8.1 Daylight and Views—Daylight Credit 8.2 Daylight and Views—Views

Innovation in Design		6 possible points
Credit 1	Innovation in Design	
Credit 2	LEED Accredited Professional	
Regional Priority		4 possible points
Credit 1	Regional Priority	

	Pts	Ce
Sustainable Sites	26	Ce
Water Efficiency	10	Sil
Energy and Atmosphere	35	Go
Materials and Resources	14	Pla
Indoor Environmental Quality	15	
Innovation in Design	6	
Regional Priority	4	
Total	110	

LEED NC - Certification


ertification Levels:ertified40 - 49 ptsilver50 - 59 ptsold60 - 79 ptslatinum80 pts & above



Concrete

2nd most consumed material in the world, after water

7 billion m³ of concrete poured in 2006 (China used 40%)

Concrete's Sustainability Impact

- + 1 ton Portland Cement generates between 0.8 to 1.0 ton \mbox{CO}_2
- + High temperature + CO_2 is a by-product of calcination process
- Approx 8% of world man-made CO₂ production is from concrete (5% for cement)

Concrete's Advantages

- Concrete is made from local materials
- Concrete can be made with component of recycled waste or industrial byproducts (fly ash, slag, glass, etc)
- Concrete's high thermal mass moderates temperature swings → significant energy savings

Steel's Sustainability Impact

CMU – School of Computer Science Complex, Pittsburgh, USA

- 1.70 tonnes of CO₂ produced per tonne of . steel
- Making steel very energy intensive
- Susceptible to corrosion
- Recycling steel requires
 1/3 of energy of new steel,
- & Reduces CO₂ emissions by up to 80% of new steel

Steel's Advantages

- Facilitates long spans, = flexibility & adaptability
- High strength-to-weight ratio reduces foundation requirements
- Can be salvaged for reuse
- Highly recycled and can continue to be recycled indefinitely

Glass

Positive Impacts:

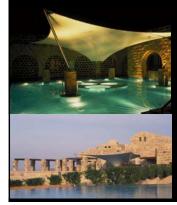
 100% fully recyclable Reasonable EE.

Negative Impacts:

- 1 tonne of glass produces b/w 500 to 900 kg of CO₂
- · Low insulation for ordinary glass

Scope for Improvement:

- Improve recycling (coatings)
- Increase re-use


Woven Fabrics

Advantages:

- Sculptural forms possible
- Lightweight, fabric only 1kg/m²
- Low maintenance
- Translucency of fabric
- Large spans possible
- · Potential to demount or relocate
- Cost for simple and large canopies, can be comparable to conventional roofing.

Woven Fabrics

Disadvantages:

- Low thermal insulation
- Acoustic performance (sound reflectance, noise break-in)
- · Susceptibility to vandalism, if accessible
- For small or complex structures, high \$\$

Lightweight Structures - LEED Opportunities ARUP

Shading

To reduce heat islands to minimise impacts on microclimates and human and wildlife habitats

LEED Credit: SS 7.1

Opportunity:

 Provide shade from architectural devices or structures that have solar reflectance index (SRI) of at least 29.

Daylighting

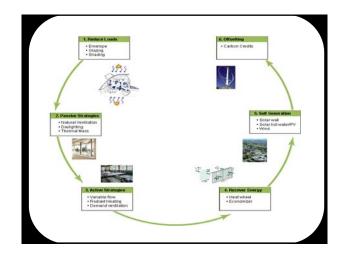
Fundamental component of built environment.

LEED Credit: IEQ 8.1

Opportunity:

- Increase solar gain in winter & decrease in summer
- Diffused light into interior spaces
- Reduce lighting required. Improve productivity through access to views.

Optimising Energy Performance


One of key aims of LEED is to reduce environmental and economic impacts associated with excessive energy use.

There are up to 19 points available.

LEED Credit: EA 1

Opportunity:

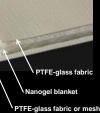
- Solar shading
- · Provide semi-conditioned spaces
- Assisting project improve energy performance

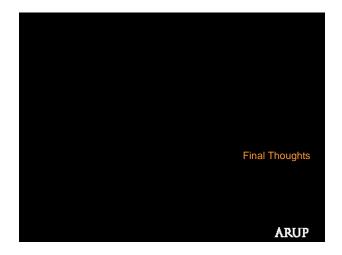
Increase Design Life

 Improve design life by use of new base materials and/or protective coating systems

Improve Recycling

- Design systems with clearly marked components for easy identification & removal
- Separate components from each other & from structure
- Design connections so material can be easily removed for reuse
- Avoid toxic materials / treatments that may inhibit future re-use or recycling of material.




Increase Insulation Levels

Tensotherm – by Birdair

Tensotherm fabric system comprises: outer and inner skin of PTFE/Glass fabrics a core of insulating blanket.

The insulating blanket comprises a heat bonded loose network of polyethylene polyurethane fibres with dispersed nanogel® granules.

Contact Information

Malcolm Barr Associate

Arup

Level 17, 1 Nicholson Street Melbourne, Vic 3000 Ph: (03) 9668-5671 Email: malcolm.barr@arup.com

ARUP